Contents lists available at ScienceDirect

Thermochimica Acta

journal homepage: www.elsevier.com/locate/tca

Experimental determination and modelling of densities and excess molar volumes of ternary system (1-butanol+cyclohexylamine+n-heptane) and corresponding binaries from 288.15 to 323.15 K

Mirjana Lj. Kijevčanin, Ivona R. Radović*, Slobodan P. Šerbanović, Aleksandar Ž. Tasić, Bojan D. Djordjević

Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, PO Box 35-03, Belgrade, Serbia

ARTICLE INFO

Article history: Received 23 April 2009 Received in revised form 7 July 2009 Accepted 8 July 2009 Available online 16 July 2009

Keywords: Excess molar volume Ternary system 1-Butanol Cyclohexylamine Modelling

ABSTRACT

Experimental densities ρ and excess molar volumes V^{E} of one ternary and three binary systems containing 1-butanol, cyclohexylamine and n-heptane at temperatures from 283.15 to 323.15 K are reported. Density measurements were performed by an Anton Paar DMA 5000 vibrating tube densimeter. The obtained V^{E} of binary systems were fitted to the Redlich–Kister equation, and to the Nagata–Tamura equation for the ternary system. For the correlation of V^{E} data of binary systems van der Waals (vdW1) and Twu–Coon–Bluck–Tilton (TCBT) mixing rules coupled with the Peng–Robinson–Stryjek–Vera (PRSV) equation of state were applied. The same models were applied for the prediction and correlation of V^{E} data of the ternary system. In addition, several empirical relationships were applied for the prediction of V^{E} data of the ternary system from the corresponding binary data. The obtained results have been analysed in terms of specific molecular interactions present in the investigated mixtures taking into considerations the effect of temperature increasing on present interactions.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Thermodynamic investigation of alcohols with amine or alkane, alone or in mixtures is of a great interest due to complex molecular interactions present in these mixtures (for example mixtures of alcohols and amine exhibit very high values of excess volumes, indicating strong interactions present in those mixtures), as well as their diverse industrial application.

For example, 1-butanol is primarily used as a solvent, an intermediate in chemical synthesis, and a fuel [1–3]. Cyclohexylamine is used in the production of pharmaceuticals and other chemicals including insecticides, pesticides, plasticizers, emulsifying agents, dyes, dry cleaning agents and corrosion inhibitors [4]. n-Heptane is widely applied in laboratories as a totally non-polar solvent. It is ideal as a transport and a storage fluid. Also, n-heptane is a component of a fuel, but is undesirable in petrol, because it burns explosively, causing engine knocking.

In the present work the binary experimental density ρ data of the 1-butanol+cyclohexylamine, 1-butanol+n-heptane and cyclohexylamine+n-heptane, as well as the ternary 1-butanol+cyclohexylamine+n-heptane at temperatures (288.15,

293.15, 298.15, 303.15, 308.15, 313.15, 318.15 and 323.15) K and atmospheric pressure have been measured.

On the other side, volumetric properties have an important role in the examination and development of thermodynamic models. With an improvement of CEOS and $CEOS/G^E$ models, equations of state have become a leading tool for the calculation of thermodynamic properties of very non-ideal mixtures. This article presents the continuity of our previous works dealing with experimental volumetric determination [1–3,5,6] and testing of thermodynamic models based on CEOS and CEOS/G^E mixing rules in correlation and prediction of thermodynamic properties, which have been widely used, due to their simplicity and accuracy. For the correlation of binary V^E, the Peng–Robinson–Stryjek–Vera cubic equation of state (PRSV CEOS) [7] coupled with the van der Waals (vdW1) [8] and $CEOS/G^E$ mixing rule introduced by Twu et al. (TCBT) [9] were chosen. Prediction of V^E of ternary system was performed by the same vdW1 and TCBT models. For the correlation of the V^E of ternary data only TCBT mixing rules were used.

Also, the aim of this paper was to involve the ternary data reduction approach, based on symmetric [10–14] and asymmetric [15–17] polynomial expressions. In addition the intention was to provide a comparison between CEOS approach and use of polynomial equations in ternary V^{E} prediction.

Literature data of V^{E} values for the system 1-butanol + n-heptane are available on several considered temperatures [18–22] in the range of 298.15–308.15 K, while for the other binary systems,

^{*} Corresponding author. Tel.: +381 11 33 70 523; fax: +381 11 33 70 387. *E-mail address:* ivonag@tmf.bg.ac.rs (I.R. Radović).

^{0040-6031/\$ -} see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.tca.2009.07.002

Comparison of the measured densities of pure components with the literature values.

Component	$T(\mathbf{K})$	$ ho (\mathrm{g}\mathrm{cm}^{-3})$			
		Exptl.	Lit.		
1-Butanol	298.15	0.805762	0.80575[26]		
Cyclohexylamine	303.15	0.857671	0.85777[26]		
n-Heptane	298.15	0.679494	0.67951[26], 0.67949[19]		

literature data are very scarce, covering a single temperature 303.15 K [23–25], and in the currently published articles no values of V^{E} have been found for the entire temperature range for the binary mixtures studied here. Also, data for the investigated ternary system are not available in the literature.

2. Experimental

2.1. Materials

1-Butanol and cyclohexylamine were supplied by Merck with a purity >99.5% and >99%, respectively, while n-heptane was a product of Fluka with a purity >99.5%. Chemicals were kept in brown bottles under inert nitrogen atmosphere and ultrasonically degassed just before a sample preparation. Table 1 lists the densities of the liquids measured in this work together with the values found in the literature. Since the agreement was very good further purifications of reagents was not performed. All mixtures were prepared by mass using the mixing cell and the procedure described previously [27,28]; presently, a Mettler AG 204 balance with a precision of 1 × 10⁻⁴ g was used. Error in mole fraction was estimated to be less than $\pm 1 \times 10^{-4}$.

2.2. Apparatus and procedure

Densities ρ of the investigated binary and ternary systems and corresponding pure substances were measured by means of an Anton Paar DMA 5000 digital vibrating U-tube densimeter (with automatic viscosity correction) having a stated accuracy of $\pm 5 \times 10^{-6} \,\mathrm{g}\,\mathrm{cm}^{-3}$. Detailed explanation of the experimental procedure has been given previously [1–3]. The temperature in the cell was regulated to $\pm 0.001 \text{ K}$ with a built-in solid-state thermostat. Temperature in the cell was measured by means of two integrated Pt 100 platinum thermometers; temperature stability was better than ± 0.002 K and its accuracy was ± 0.01 K. All molar quantities were based on the IUPAC relative atomic mass table. Calibration of the apparatus was performed periodically using ambient air and ultrapure water. The experimental uncertainty in the density is about $\pm 1 \times 10^{-5} \, g \, cm^{-3}$, while the average uncertainty in excess molar volume is estimated to be $\pm 3 \times 10^{-3} \text{ cm}^{-3} \text{ mol}^{-1}$.

3. Results and discussion

The excess molar volumes V^{E} , were calculated from the equation:

$$V^{\rm E} = \sum_{i=1}^{n} x_i M_i \left[\left(\frac{1}{\rho} \right) - \left(\frac{1}{\rho_i} \right) \right] \tag{1}$$

where *n* is the number of components, x_i is the mole fraction of component *i* in the mixture, M_i its molecular weight, and ρ and ρ_i are the measured densities of the mixture, and the pure component, respectively.

Tables 2 and 3 list the measured densities ρ , and the corresponding values of $V^{\rm E}$ in the temperature range 288.15–323.15 K for the binaries 1-butanol+n-heptane, 1-butanol+cyclohexylamine and cyclohexylamine + n-heptane and for the ternary 1butanol + cyclohexylamine + n-heptane systems, respectively.

Data for the binary mixtures were fitted to a Redlich–Kister polynomial [29]:

$$V_{ij}^{\rm E} = x_i x_j \sum_{p=0}^{k} A_p (2x_i - 1)^p$$
⁽²⁾

where A_p is the adjustable parameters, and k is the number of adjustable parameters determined by means of the *F*-test [30].

The ternary excess molar volumes were correlated by the expression proposed by Nagata and Tamura [31]:

$$V_{123}^{E} = V_{12}^{E} + V_{13}^{E} + V_{23}^{E} + x_{1}x_{2}x_{3}RT(B_{0} - B_{1}x_{1} - B_{2}x_{2} - B_{3}x_{1}^{2} - B_{4}x_{2}^{2} - B_{5}x_{1}x_{2} - B_{6}x_{1}^{3} - B_{7}x_{2}^{3} - B_{8}x_{1}^{2}x_{2})$$
(3)

where V_{12}^{E} , V_{13}^{E} and V_{23}^{E} represent the binary excess molar volumes, with x_1 , x_2 and x_3 mole fractions in the ternary system. The adjustable parameters of ternary contribution B_0 , B_1 , ..., B_8 were obtained from ternary experimental V^{E} data.

The results of the V^{E} calculation performed by Eqs. (2) and (3) were assessed by the root-mean-square deviation σ :

$$\sigma = \left(\sum_{i=1}^{N} \frac{\left(V_{\exp,i}^{E} - V_{cal,i}^{E}\right)^{2}}{N}\right)^{1/2}$$
(4)

and by the percentage average absolute deviation $PD(V^E)$:

$$PD(V^{E}) = \frac{100}{N} \sum_{i=1}^{N} \left| \frac{V_{exp}^{E} - V_{cal}^{E}}{(V_{exp}^{E})_{max}} \right|_{i}$$
(5)

In Eqs. (4) and (5) *N* denotes the number of experimental data points, while $(V_{exp}^E)_{max}$ is the maximum value of experimental V^E .

Adjustable parameters of the Redlich–Kister and of the Nagata–Tamura equations at each temperature separately along with the corresponding values for σ and PD(V^{E}) are summarized in Table 4 for binary systems and in Table 5 for ternary system.

For the systems of 1-butanol with cyclohexylamine the agreement between the present and literature values [23] is very good, having the error below 1%. The excess molar volume data for the system 1-butanol + n-heptane have been previously experimentally determined using several different measuring techniques: (i) bicapillary pycnometer [21], (ii) dilatometer [18,20] and (iii) vibrating tube densimeter [19] and [22]. Treszczanowicz and Benson [18] and Berro and Péneloux [19] experimentally determined V^E of 1butanol+n-heptane at 298.15 K, Nath and Pandey [20] at 288.15 and 298.15 K, Sastry and Valand [21] at 298.15 and 308.15 K, while Vijande et al. [22] reported V^{E} data at five temperatures: 288.15, 298.15, 298.15, 303.15 and 308.15 K. The V^E – x curves of the literature data at each measured temperature have the same shape as those obtained in this work. Comparison of our data and those achieved by Vijande et al. [22] has shown an excellent agreement at each temperature. The results of Nath and Pandey [20] at 298.15 K are in a very good agreement with the results from this work, but at lower temperature 288.15 K are rather higher. The disagreement between data of this work and literature data at 298.15 K for the area of minima is below 2.15%. However, the results of Sastry and Valand [21] are not included in this analyses showing the largest discrepancy, especially in the range of maximal V^E values. Comparison of our experimental results of V^{E} at 303.15 K with data reported previously [24,25] for the system cyclohexylamine+nheptane has shown that our V^E data are in excellent agreement with the values obtained by Grenner et al. [24], while maximum discrepancy between data reported by Raju et al. [25] and our results is $0.011 \text{ cm}^3 \text{ mol}^{-1}$.

Table 2
Densities ρ and excess molar volumes V ^E for binary systems from T=(288.15 to 323.15 K) and atmospheric pressure.

<i>x</i> ₁	ρ (g cm ⁻³)	$V^{\rm E}$ (cm ³ mol ⁻¹)	<i>x</i> ₁	$\rho (\text{g cm}^{-3})$	$V^{\rm E}$ (cm ³ mol ⁻¹)	<i>x</i> ₁	$\rho (\mathrm{g}\mathrm{cm}^{-3})$	$V^{\rm E}$ (cm ³ mol ⁻¹)
			1-Buta	nol (1) + cyclohexyla	mine (2)			
				<i>T</i> =288.15 K				
0.0000	0.871290	0.0000	0.4000	0.860506	-1.1407	0.7984	0.834505	-0.8309
0.0499	0.870402	-0.1876	0.4994	0.855958	-1.2435	0.8500	0.829604	-0.6575
0.1019	0.869284	-0.3614	0.6006	0.85014/	-1.2368	0.8993	0.824498	-0.4553
0.1499	0.868221	-0.5209	0.0977	0.843134	-1.0952	0.9508	0.819064	-0.2449
0.1997	0.867037	-0.0795	0.7497	0.838904	-0.9862	1.0000	0.015575	0.0000
0.2333	0.004155	-0.5450						
	0.000747	0.0000	0.4000	T=293.15 K	11101	0 700 4	0.000511	0.0004
0.0000	0.866/4/	0.0000	0.4000	0.856206	- 1.1494	0.7984	0.830511	-0.8364
0.0499	0.863907	-0.1918	0.4994	0.851708	- 1.2506	0.8500	0.823004	-0.0020
0.1019	0.804828	0.5001	0.0000	0.840904	-1.2427	0.8555	0.820000	0.24351
0.1997	0.862648	-0.6898	0 7497	0.834921	-0.9922	1 0000	0.809573	0 0000
0.2995	0.859800	-0.9542	011 107	0.000 1021	010022		0.000070	0.0000
				T 200 15 K				
0.0000	0 862207	0.0000	0.4000	I = 298.15 K	1 1577	0 7084	0 926/09	0.8407
0.0000	0.862207	0.0000	0.4000	0.831899	-1.1577	0.7984	0.820498	-0.8407
0.0455	0.860372	-0.3746	0.4994	0.841767	-1.2305	0.8993	0.821705	-0.4622
0.1499	0.859375	-0.5380	0.6977	0.834924	-1.1054	0.9508	0.811359	-0.2487
0.1997	0.858251	-0.6992	0.7497	0.830861	-0.9971	1.0000	0.805762	0.0000
0.2995	0.855453	-0.9642						
				T_ 202 15 V				
0.0000	0 857671	0.0000	0.4000	1 = 505.15 K 0 847581	_1 1657	0 7984	0 822464	_0.8451
0.0499	0.856914	-0.1989	0.4994	0.843167	-1.2622	0.8500	0.822404	-0.6703
0.1019	0.855914	-0.3809	0.6006	0.837554	-1.2523	0.8993	0.812762	-0.4651
0.1499	0.854945	-0.5458	0.6977	0.830791	-1.1098	0.9508	0.807471	-0.2501
0.1997	0.853850	-0.7084	0.7497	0.826780	-1.0019	1.0000	0.801923	0.0000
0.2995	0.851095	-0.9735						
				T= 308 15 K				
0.0000	0.853138	0.0000	0.4000	0.843244	-1.1726	0.7984	0.818404	-0.8493
0.0499	0.852415	-0.2019	0.4994	0.838874	-1.2676	0.8500	0.813708	-0.6739
0.1019	0.851450	-0.3866	0.6006	0.833322	-1.2568	0.8993	0.808799	-0.4680
0.1499	0.850509	-0.5532	0.6977	0.826637	-1.1141	0.9508	0.803552	-0.2514
0.1997	0.849438	-0.7168	0.7497	0.822671	-1.0061	1.0000	0.798053	0.0000
0.2995	0.846722	-0.9819						
				T=313.15 K				
0.0000	0.848607	0.0000	0.4000	0.838892	-1.1793	0.7984	0.814315	-0.8534
0.0499	0.847912	-0.2043	0.4994	0.834561	-1.2725	0.8500	0.809660	-0.6768
0.1019	0.846979	-0.3915	0.6006	0.829067	-1.2610	0.8993	0.804804	-0.4709
0.1499	0.846063	-0.5598	0.6977	0.822458	-1.1183	0.9508	0.799601	-0.2529
0.1997	0.845013	-0.7242	0.7497	0.818541	-1.0108	1.0000	0.794147	0.0000
0.2995	0.842337	-0.9899						
				T=318.15 K				
0.0000	0.844073	0.0000	0.4000	0.834521	-1.1843	0.7984	0.810191	-0.8543
0.0499	0.843406	-0.2068	0.4994	0.830229	-1.2759	0.8500	0.805587	-0.6778
0.1019	0.842499	-0.3958	0.6006	0.824/83	-1.2624	0.8993	0.800769	-0.4/02
0.1499	0.841005	-0.5054	0.0977	0.818247	-1.1190	0.9508	0.795000	-0.2503
0.2995	0.837935	-0.9964	0.7457	0.014570	-1.0124	1.0000	0.750251	0.0000
012000	0.007.000	0.0001						
0.0000	0 0 0 0 5 4 7	0.0000	0.4000	T = 323.15 K	1 1000	0 700 4	0.0000004	0.0504
0.0000	0.839547	0.0000	0.4000	0.830136	-1.1906	0.7984	0.806034	-0.8584
0.0499	0.838018	-0.2014	0.4994	0.820478	-1.2602	0.8500	0.801472	-0.0815
0.1499	0.837144	-0.5711	0.6977	0.820470	-1 1238	0.9508	0.791569	-0.2514
0.1997	0.836136	-0.7378	0.7497	0.810181	-1.0170	1.0000	0.786238	0.0000
0.2995	0.833516	-1.0028						
			1-B	utanol (1) + n-heptar	ne (2)			
				<i>T</i> =288.15 K				
0.0000	0.687954	0.0000	0.2507	0.708652	0.1882	0.6497	0.754667	0.0950
0.0091	0.692997	0.1071	0.2999	0.713405	0.1915	0.0999	0.701833	0.0759
0.0999	0.095450	0.1545	0.3301	0.716522	0.1645	0.7502	0.709572	0.0393
0 1701	0 701352	0.1666	0.4497	0.729369	0 1684	0.8498	0.785510	0.0298
0.2000	0.703971	0.1811	0.4999	0.735288	0.1484	0.9006	0.794437	0.0155
0.2497	0.708550	0.1895	0.5516	0.741637	0.1344	1.0000	0.813373	0.0000
				T_ 202 45 V				
0.0000	0 683733	0.0000	0.2507	1 = 293.15 K 0 704392	0 2066	0 6497	0 750570	0 1044
0.0691	0.688732	0.1198	0.2999	0.709158	0.2093	0.6999	0.757773	0.0830
0.0999	0.691164	0.1486	0.3501	0.714283	0.2024	0.7502	0.765348	0.0649

Table 2 (Continued)

<i>x</i> ₁	ρ (g cm ⁻³)	V^{E} (cm ³ mol ⁻¹)	<i>x</i> ₁	ρ (g cm ⁻³)	$V^{\mathbb{E}}$ (cm ³ mol ⁻¹)	<i>x</i> ₁	$\rho (\text{g cm}^{-3})$	$V^{\rm E}$ (cm ³ mol ⁻¹)
0.1405	0.605200	0 17/1	0 2009	0 710505	0 1021	0 7000	0 772267	0.0420
0.1495	0.093309	0.1741	0.3998	0.715353	0.1931	0.7555	0.773207	0.0429
0.1701	0.097089	0.1020	0.4457	0.723103	0.1623	0.0430	0.700548	0.0160
0.2000	0.033708	0.1565	0.5516	0.737484	0.1025	1 0000	0.809573	0.0000
0.2437	0.704230	0.2008	0.5510	0.757464	0.1400	1.0000	0.803373	0.0000
0.0000	0.070.40.4	0.0000	0.25.07	T = 298.15 K	0.0004	0.0407	0 746442	0.1162
0.0000	0.679494	0.0000	0.2507	0.700109	0.2264	0.6497	0.746442	0.1162
0.0691	0.684439	0.1349	0.2999	0.704880	0.2299	0.6999	0.753681	0.0927
0.0999	0.686867	0.1658	0.3501	0.710016	0.2228	0.7502	0.761298	0.0721
0.1495	0.691013	0.1929	0.3998	0.715341	0.2132	0.7999	0.769263	0.0476
0.1701	0.692795	0.2017	0.4497	0.720925	0.2041	0.8498	0.777613	0.0348
0.2000	0.695420	0.2173	0.4999	0.726892	0.1805	0.9006	0.786635	0.0178
0.2497	0.700016	0.2260	0.5516	0.733291	0.1634	1.0000	0.805762	0.0000
				<i>T</i> = 303.15 K				
0.0000	0.675229	0.0000	0.2507	0.695793	0.2480	0.6497	0.742276	0.1298
0.0691	0.680112	0.1520	0.2999	0.700571	0.2519	0.6999	0.749559	0.1029
0.0999	0.682541	0.1840	0.3501	0.705715	0.2450	0.7502	0.757214	0.0803
0.1495	0.686688	0.2126	0.3998	0.711055	0.2345	0.7999	0.765220	0.0539
0.1701	0.688469	0.2224	0.4497	0.716653	0.2251	0.8498	0.773620	0.0387
0.2000	0.691091	0.2397	0.4999	0.722640	0.2001	0.9006	0.782692	0.0199
0.2497	0.695692	0.2490	0.5516	0.729062	0.1817	1.0000	0.801923	0.0000
				T = 209.15 V				
0.0000	0 670941	0.0000	0 2507	0 691434	0 2736	0 6497	0 738070	0 1456
0.0000	0.675754	0.1712	0.2007	0.606222	0.2750	0.6000	0.735070	0.1450
0.0091	0.679170	0.1715	0.2555	0.090222	0.2771	0.0555	0.743390	0.0002
0.0999	0.070175	0.2033	0.3301	0.701373	0.2700	0.7502	0.755050	0.0505
0.1495	0.002525	0.2362	0.5998	0.700720	0.2394	0.7999	0.701140	0.0014
0.1701	0.084105	0.2464	0.4497	0.712340	0.2491	0.8498	0.769591	0.0434
0.2000	0.080729	0.2043	0.4999	0.718343	0.2232	0.9006	0.778710	0.0224
0.2497	0.091551	0.2750	0.5510	0.724795	0.2024	1.0000	0.798035	0.0000
				T=313.15 K				
0.0000	0.666621	0.0000	0.2507	0.687035	0.3012	0.6497	0.733819	0.1632
0.0691	0.671356	0.1927	0.2999	0.691828	0.3053	0.6999	0.741178	0.1306
0.0999	0.673778	0.2285	0.3501	0.696989	0.2984	0.7502	0.748919	0.1022
0.1495	0.677919	0.2616	0.3998	0.702355	0.2865	0.7999	0.757016	0.0702
0.1701	0.679699	0.2729	0.4497	0.707984	0.2752	0.8498	0.765519	0.0492
0.2000	0.682324	0.2916	0.4999	0.714006	0.2479	0.9006	0.774698	0.0257
0.2497	0.686930	0.3031	0.5516	0.720478	0.2256	1.0000	0.794147	0.0000
				T = 318.15 K				
0.0000	0.662273	0.0000	0.2507	0.682589	0.3338	0.6497	0.729516	0.1862
0.0691	0.666921	0.2167	0 2999	0.687391	0 3376	0.6999	0 736918	0 1499
0.0001	0.669334	0.2558	0.3501	0.692557	0.3313	0.7502	0.744697	0.1191
0.0333	0.673469	0.2018	0.3008	0.607035	0.3187	0.7902	0.752830	0.0842
0.1455	0.675246	0.2018	0.3338	0.037355	0.3060	0.7333	0.761307	0.0599
0.1701	0.073240	0.3044	0.4457	0.709517	0.3003	0.0430	0.770631	0.0335
0.2000	0.682482	0.3255	0.5516	0.705018	0.2730	1,0000	0.790231	0.0000
0.2497	0.082482	0.3300	0.5510	0.710114	0.2338	1.0000	0.750251	0.0000
				T=323.15 K				
0.0000	0.657896	0.0000	0.2507	0.678099	0.3687	0.6497	0.725167	0.2086
0.0691	0.662457	0.2410	0.2999	0.682909	0.3721	0.6999	0.732609	0.1685
0.0999	0.664851	0.2853	0.3501	0.688076	0.3667	0.7502	0.740419	0.1359
0.1495	0.668978	0.3244	0.3998	0.693471	0.3521	0.7999	0.748617	0.0961
0.1701	0.670749	0.3388	0.4497	0.699118	0.3408	0.8498	0.757222	0.0690
0.2000	0.673376	0.3589	0.4999	0.705176	0.3102	0.9006	0.766522	0.0383
0.2497	0.677987	0.3720	0.5516	0.711695	0.2838	1.0000	0.786238	0.0000
			Cyclo	hexylamine (1) + n-he	ptane (2)			
	0.00705.4	0.0000	0.0004	T=288.15 K	0.0100	0.0400	0 70 4000	0.0540
0.0000	0.687954	0.0000	0.3004	0.732296	0.3198	0.6498	0.794839	0.2548
0.0501	0.694788	0.0878	0.4010	0.749067	0.3294	0.6994	0.804717	0.2330
0.1002	0.701818	0.1651	0.4497	0.757546	0.3223	0.7999	0.825611	0.1779
0.1501	0.709079	0.2204	0.5597	0.777524	0.2949	0.8992	0.847523	0.1059
0.2305	0.721227	0.2882	0.6001	0.785155	0.2825	1.0000	0.871290	0.0000
				<i>T</i> =293.15 K				
0.0000	0.683733	0.0000	0.3004	0.728038	0.3093	0.6498	0.790479	0.2429
0.0501	0.690573	0.0836	0.4010	0.744783	0.3179	0.6994	0.800344	0.2209
0.1002	0.697601	0.1584	0 4497	0.753244	0.3111	0 7999	0.821199	0.1675
0.1501	0.704855	0.2122	0.5597	0.773195	0.2825	0.8992	0.843061	0.0988
0.2305	0.716988	0.2782	0.6001	0.780814	0.2701	1,0000	0.866747	0.0000
			210001			1.0000		
0.0000	0.670.46.4	0.0000	0.2004	T = 298.15 K	0.2007	0.0.100	0.70(11)	0.0000
0.0000	0.679494	0.0000	0.3004	0.723765	0.2987	0.6498	0.786113	0.2306
0.0501	0.686334	0.0806	0.4010	0.740484	0.3065	0.6994	0.795962	0.2090
0.1002	0.693360	0.1530	0.4497	0.748933	0.2993	0.7999	0.816783	0.1569
0.1501	0.700609	0.2049	0.5597	0.768854	0.2702	0.8992	0.838598	0.0916
0.2305	0.712729	0.2690	0.6001	0.776463	0.2576	1.0000	0.862207	0.0000

Table 2 (Continued)

<i>x</i> ₁	$\rho (\mathrm{g}\mathrm{cm}^{-3})$	V^{E} (cm ³ mol ⁻¹)	<i>x</i> ₁	ho (g cm ⁻³)	$V^{\rm E}$ (cm ³ mol ⁻¹)	<i>x</i> ₁	ρ (g cm ⁻³)	$V^{\rm E}$ (cm ³ mol ⁻¹)			
				T=303.15 K	,						
0.0000	0.675229	0.0000	0.3004	0.719477	0.2869	0.6498	0.781744	0.2167			
0.0501	0.682072	0.0772	0.4010	0.736173	0.2938	0.6994	0.791575	0.1962			
0.1002	0.689097	0.1471	0.4497	0.744614	0.2856	0.7999	0.812360	0.1464			
0.1501	0.696341	0.1972	0.5597	0.764509	0.2561	0.8992	0.834132	0.0845			
0.2305	0.708452	0.2587	0.6001	0.772102	0.2445	1.0000	0.857671	0.0000			
<i>T</i> =308.15 K											
0.0000	0.670941	0.0000	0.3004	0.715170	0.2750	0.6498	0.777362	0.2031			
0.0501	0.677784	0.0745	0.4010	0.731847	0.2806	0.6994	0.787181	0.1829			
0.1002	0.684805	0.1426	0.4497	0.740280	0.2716	0.7999	0.807934	0.1353			
0.1501	0.692046	0.1907	0.5597	0.760149	0.2421	0.8992	0.829662	0.0777			
0.2305	0.704150	0.2494	0.6001	0.767732	0.2307	1.0000	0.853138	0.0000			
	<i>Т</i> =313.15 К										
0.0000	0.666621	0.0000	0.3004	0.710839	0.2625	0.6498	0.772968	0.1887			
0.0501	0.673467	0.0712	0.4010	0.727504	0.2659	0.6994	0.782776	0.1691			
0.1002	0.680490	0.1364	0.4497	0.735927	0.2568	0.7999	0.803499	0.1241			
0.1501	0.687730	0.1822	0.5597	0.755773	0.2274	0.8992	0.825189	0.0707			
0.2305	0.699827	0.2385	0.6001	0.763352	0.2154	1.0000	0.848607	0.0000			
				<i>T</i> = 318.15 K							
0.0000	0.662273	0.0000	0.3004	0.706489	0.2488	0.6498	0.768563	0.1732			
0.0501	0.669120	0.0684	0.4010	0.723139	0.2510	0.6994	0.778360	0.1544			
0.1002	0.676146	0.1306	0.4497	0.731554	0.2416	0.7999	0.799055	0.1124			
0.1501	0.683386	0.1740	0.5597	0.751384	0.2115	0.8992	0.820710	0.0633			
0.2305	0.695479	0.2275	0.6001	0.758953	0.2002	1.0000	0.844073	0.0000			
				T=323.15 K	,						
0.0000	0.657896	0.0000	0.3004	0.702117	0.2347	0.6498	0.764139	0.1589			
0.0501	0.664739	0.0670	0.4010	0.718756	0.2356	0.6994	0.773935	0.1396			
0.1002	0.671776	0.1244	0.4497	0.727160	0.2267	0.7999	0.794605	0.1008			
0.1501	0.679015	0.1658	0.5597	0.746981	0.1953	0.8992	0.816229	0.0564			
0.2305	0.691106	0.2164	0.6001	0.754544	0.1843	1.0000	0.839547	0.0000			

In the 1-butanol+cyclohexylamine system dominates the chemical contribution according to the complexes formed between unlike molecules, exhibiting large negative V^E , as can be observed in Fig. 1a, with small influence of temperature on V^E [32]. Influence of the disruption of the self-associated 1-butanol molecules is smaller compared to the effect of H-bonding formation between alcohol and amine molecules, causing approximately symmetrical position with respect to mole fraction. Non-associating molecule n-heptane acts as an inert component, in the mixture with 1-butanol or cyclohexylamine as associating components.

As can be seen from Fig. 1b, for the binary system of 1-butanol and n-heptane V^{E} values are positive in the entire composition range with asymmetric $V^{E} - x_1$ curves, shifted towards the lower 1-butanol mole fractions. Also, it is obvious that the V^E data values increase with temperature rising from 288.15 to 323.15 K. As it was discussed previously [33], the positive excess volumes in mixtures of n-alcohols and n-alkanes are the result of (i) the disruption of alcohol multimers due to breaking of hydrogen bonds (chemical contribution) and (ii) non-specific physical interactions between the real species in a mixture (physical contribution). Negative V^E values are mostly caused by interstitial accommodation and changes of free volumes (structural contribution). Since the chemical contribution of hydrogen bond breaking to V^E is negligible, except for small mole fractions, it is assumed that physical contribution comprises the major part of positive V^E values [33] in this system. The sharp increases of the V^E in the dilute 1-butanol region (Fig. 1b) suggest the dominance of the disruption of the H-bonds of alcohol multimers by unlike n-heptane molecules.

The system cyclohexylamine + n-heptane (Fig. 1c) also shows positive V^E values in a whole concentration range. In this case the highest values of V^E are obtained for the lowest temperature (288.15 K). It is assumed that the positive values are due to the breakdown of the hydrogen bonded structure of cyclohexylamine. H-bonds tend to be broken and V^E becomes larger with a temperature rising, and positive values of V^E in the mixture cyclohexylamine + n-heptane (Fig. 1c) are a consequence of the rupture of the compact hydrogen bonded structure of this amine.

Decreasing of V^{E} values with the temperature rising were probably the consequence of stronger amine–amine interactions at higher temperature.

The experimental results of V^{E} for the ternary mixture at 303.15 K are shown in Fig. 2 along with six different lines of constant ratio $z = x_1/x_3$. It is clear that a large amount of the 1-butanol (lines z_5 and z_6) gives the high approximately symmetrical contractive V^{E} with respect to x_2 mole fraction due to the cross-association between 1-butanol and cyclohexylamine molecules. Minimum obtained for z_6 is close to the minimum of the binary mixture 1-butanol + cyclohexylamine. Adding of a large amount of n-heptane causes expansion of V^{E} , showing nearly ideal behavior of the mixture for z_1 .

Fig. 3 shows the isolines of ternary V^E at 303.15 K. It is evident that V^E of this system is mostly negative except for the region very close to binary mixtures of n-heptane with 1-butanol, or cyclohexy-lamine where a change in V^E sign occurs.

Fig. 4 shows the three-dimensional presentation of V^E ternary mixture at 313.15 K generated by Eq. (3). This surface follows and confirms all remarks given for binaries and ternary mixture.

4. Modelling of V^E data

4.1. Cubic EOS mixing rules

In the last few years the interest related to modelling of V^E by the CEOS and CEOS/ G^E models has increased. In order to use these methods the comparative study of already adequate mixing rules is applied. For all calculations the PRSV cubic equation of state was selected [7] and applied with vdW1 [8] and TCBT [9] mixing rules, with the models previously established [1–3,5,6].

Densities ρ and excess molar volumes V^{E} for 1-butanol(1)+cyclohexylamine(2)+n-heptane(3) from T = (288.15 to 323.15 K) and atmospheric pressure.

<i>x</i> ₁	<i>x</i> ₂	$ ho (\mathrm{g}\mathrm{cm}^{-3})$	V^{E} (cm ³ mol ⁻¹)	<i>x</i> ₁	<i>x</i> ₂	ho (g cm ⁻³)	$V^{\rm E}$ (cm ³ mol ⁻¹)
			1-Butanol(1)+cyclohe	xylamine(2) + n-heptar	ne(3)		
0.0000	0 1001	0.710070	1=	288.15 K	0 1010	0.702.400	0.24.41
0.0900	0.1001	0.710879	-0.0508	0.5394	0.1010	0.763468	-0.3441
0.0806	0.2001	0.726010	-0.0503	0.4801	0.2000	0.777830	-0.6495
0.0698	0.3001	0.741383	-0.0111	0.4198	0.3003	0.791414	-0.8184
0.0615	0.3987	0.757477	0.0159	0.3600	0.4000	0.804131	-0.8709
0.0502	0.5005	0.774365	0.0584	0.3003	0.4997	0.816077	-0.8161
0.0400	0.6003	0.791821	0.0843	0.2399	0.6000	0.827615	-0.7074
0.0289	0.7008	0.8101/9	0.0877	0.1803	0.6994	0.838679	-0.5494
0.0200	0.7999	0.829525	0.0716	0.1197	0.8006	0.849752	-0.3676
0.0102	0.8998	0.849840	0.0481	0.0604	0.8994	0.860530	-0.1958
0.1799	0.1000	0.719997	-0.1501	0.7197	0.1003	0.791054	-0.4087
0.1586	0.2066	0.736287	-0.2447	0.6399	0.2002	0.803889	-0.7604
0.1401	0.3001	0.750604	-0.2458	0.5599	0.3001	0.815501	-0.9857
0.1204	0.4001	0.766182	-0.2076	0.4788	0.4016	0.826078	-1.0820
0.1000	0.5002	0.782130	-0.1574	0.4000	0.5000	0.835319	-1.0765
0.0802	0.6001	0.798605	-0.1000	0.3203	0.5996	0.843452	-0.9393
0.0597	0.7006	0.815802	-0.0637	0.2403	0.6996	0.851166	-0.7682
0.0404	0.7997	0.833474	-0.0252	0.1604	0.7995	0.858178	-0.5313
0.0211	0.8987	0.851937	-0.0118	0.0798	0.9002	0.865039	-0.2903
0.3603	0.0998	0.739972	-0.2554	0.8101	0.0998	0.806918	-0.4381
0.3198	0.2002	0.755320	-0.4970	0.7198	0.2001	0.818503	-0.8031
0.2802	0.3000	0.770031	-0.5900	0.6299	0.3001	0.828801	-1.0501
0.2402	0.3999	0.784335	-0.5850	0.5400	0.4000	0.837770	-1.1742
0.1998	0.5002	0.798549	-0.5275	0.4499	0.5002	0.845427	-1.1665
0.1599	0.6001	0.812677	-0.4260	0.3598	0.6002	0.851930	-1.0528
0.1201	0.7001	0.827008	-0.3170	0.2698	0.7002	0.857600	-0.8601
0.0801	0.7999	0.841517	-0.2124	0.1799	0.8001	0.862673	-0.6172
0.0401	0,9000	0.856197	-0.0913	0.0901	0.8998	0.867238	-0.3356
0.0 10 1	0.5000	0.050157	0.0515	0.4922	0.4415	0.838907	_1 1630
			<i>T</i>	0.4 <i>522</i>	0.4415	0.030307	-1.1050
0.0000	0 1001	0 706600	0.0462	0.5204	0 1010	0 750225	0.2426
0.0900	0.1001	0.700003	-0.0403	0.3394	0.1010	0.739323	-0.5450
0.0800	0.2001	0.721740	-0.0352	0.4601	0.2000	0.775059	-0.0520
0.0098	0.3001	0.757112	-0.0201	0.4196	0.3003	0.767176	-0.8240
0.0015	0.5967	0.733165	0.0054	0.3000	0.4000	0.799602	-0.6794
0.0502	0.5005	0.770050	0.0462	0.3003	0.4997	0.811/82	-0.8270
0.0400	0.6003	0.787478	0.0720	0.2399	0.6000	0.823306	-0.7217
0.0289	0.7008	0.805808	0.0752	0.1803	0.6994	0.834334	-0.5634
0.0200	0.7999	0.825120	0.0602	0.1197	0.8006	0.845361	-0.3797
0.0102	0.8998	0.845379	0.0407	0.0604	0.8994	0.856074	-0.2034
0.1799	0.1000	0.715732	-0.1446	0.7197	0.1003	0.787021	-0.4114
0.1586	0.2066	0.732012	-0.2463	0.6399	0.2002	0.799792	-0.7665
0.1401	0.3001	0.746325	-0.2530	0.5599	0.3001	0.811333	-0.9928
0.1204	0.4001	0.761890	-0.2184	0.4788	0.4016	0.821850	-1.0903
0.1000	0.5002	0.777821	-0.1705	0.4000	0.5000	0.831051	-1.0871
0.0802	0.6001	0.794271	-0.1136	0.3203	0.5996	0.839149	-0.9514
0.0597	0.7006	0.811442	-0.0777	0.2403	0.6996	0.846826	-0.7811
0.0404	0.7997	0.829072	-0.0370	0.1604	0.7995	0.853789	-0.5427
0.0211	0.8987	0.847480	-0.0196	0.0798	0.9002	0.860583	-0.2976
0.3603	0.0998	0.735746	-0.2505	0.8101	0.0998	0.802957	-0.4424
0.3198	0.2002	0.751066	-0.4976	0.7198	0.2001	0.814457	-0.8094
0.2802	0.3000	0.765761	-0.5959	0.6299	0.3001	0.824668	-1.0568
0.2402	0.3999	0.780050	-0.5949	0.5400	0.4000	0.833562	-1.1813
0.1998	0.5002	0.794250	-0.5408	0.4499	0.5002	0.841167	-1.1754
0.1599	0.6001	0.808351	-0.4399	0.3598	0.6002	0.847630	-1.0637
0.1201	0.7001	0.822652	-0.3308	0.2698	0.7002	0.853259	-0.8718
0.0801	0.7999	0.837117	-0.2241	0.1799	0.8001	0.858283	-0.6281
0.0401	0.9000	0.851740	-0.0989	0.0901	0.8998	0.862782	-0.3428
				0.4922	0.4415	0.834671	-1.1708
			T= :	298.15 K			
0.0900	0.1001	0.702316	-0.0404	0.5394	0.1010	0.755147	-0.3400
0.0806	0.2001	0.717447	-0.0547	0.4801	0.2000	0.769431	-0.6551
0.0698	0.3001	0.732824	-0.0287	0.4198	0.3003	0.782926	-0.8290
0.0615	0.3987	0.748878	-0.0056	0.3600	0.4000	0.795583	-0.8878
0.0502	0.5005	0.765727	0.0334	0.3003	0.4997	0.807483	-0.8385
0.0400	0.6003	0.783135	0.0581	0.2399	0.6000	0.818978	-0.7344
0.0289	0.7008	0.801429	0.0628	0.1803	0.6994	0.829977	-0.5765
0.0200	0.7999	0.820709	0.0488	0.1197	0.8006	0.840963	-0.3913
0.0102	0.8998	0.840918	0.0332	0.0604	0.8994	0.851615	-0.2106
0.1799	0.1000	0.711438	-0.1365	0.7197	0.1003	0.782966	-0.4129
0.1586	0,2066	0.727709	-0.2455	0.6399	0.2002	0,795667	-0.7704
0.1401	0.3001	0.742019	-0.2580	0.5599	0.3001	0.807146	-0.9988
0.1204	0.4001	0.757586	-0.2293	0.4788	0.4016	0.817606	-1.0975
0.1000	0.5002	0 773502	-0.1838	0.4000	0 5000	0.826765	-1.0962
0.0802	0.6001	0.789932	-0.1280	0 3203	0 5996	0.834835	-0.9628
	0.0001	211 000032		0.0200	0.0000	2.00 1000	0.0020

Table 3 (Continued)

<i>x</i> ₁	<i>x</i> ₂	ρ (g cm ⁻³)	$V^{\rm E}$ (cm ³ mol ⁻¹)	<i>x</i> ₁	<i>x</i> ₂	ho (g cm ⁻³)	$V^{\rm E}$ (cm ³ mol ⁻¹)
0.0597	0.7006	0.807074	-0.0917	0.2403	0.6996	0.842477	-0.7934
0.0404	0.7997	0.824666	-0.0488	0.1604	0.7995	0.849393	-0.5534
0.0211	0.8987	0.843021	-0.0274	0.0798	0.9002	0.856124	-0.3046
0.3603	0.0998	0.731497	-0.2442	0.8101	0.0998	0.798974	-0.4454
0.3198	0.2002	0.746793	-0.4973	0.7198	0.2001	0.810393	-0.8148
0.2802	0.3000	0.761467	-0.5999	0.6299	0.3001	0.820518	-1.0625
0.2402	0.3999	0.775747	-0.6038	0.5400	0.4000	0.829340	-1.1876
0.1998	0.5002	0.789937	-0.5535	0.4499	0.5002	0.836892	-1.1831
0.1599	0.6001	0.804022	-0.4546	0.3598	0.6002	0.843318	-1.0735
0.1201	0.7001	0.818289	-0.3445	0.2698	0.7002	0.848912	-0.8831
0.0801	0.7999	0.832711	-0.2355	0.1799	0.8001	0.853890	-0.6387
0.0401	0.9000	0.847278	-0.1060	0.0901	0.8998	0.858325	-0.3498
				0.4922	0.4415	0.830424	-1.1780
			T= 30)3.15 K			
0.0900	0.1001	0.697998	-0.0343	0.5394	0.1010	0.750943	-0.3361
0.0806	0.2001	0.713136	-0.0571	0.4801	0.2000	0.765197	-0.6571
0.0698	0.3001	0.728515	-0.0373	0.4198	0.3003	0.778657	-0.8344
0.0615	0.3987	0.744562	-0.0179	0.3600	0.4000	0.791285	-0.8960
0.0502	0.5005	0.761393	0.0196	0.3003	0.4997	0.803165	-0.8494
0.0400	0.6003	0.778782	0.0436	0.2399	0.6000	0.814642	-0.7476
0.0289	0.7008	0.797047	0.0492	0.1803	0.6994	0.825613	-0.5898
0.0200	0.7999	0.816293	0.0373	0.1197	0.8006	0.836557	-0.4024
0.0102	0.8998	0.836453	0.0260	0.0604	0.8994	0.84/156	-0.21/9
0.1799	0.1000	0.707118	-0.1280	0./19/	0.1003	0.778883	-0.4140
0.1586	0.2066	0.723390	-0.2459	0.6399	0.2002	0.791520	-0.7743
0.1401	0.3001	0.757700	-0.2045	0.3399	0.3001	0.802955	-1.0041
0.1204	0.4001	0.755201	-0.2398	0.4788	0.4010	0.813343	-1.1044
0.1000	0.5002	0.785583	_0.1429	0.3203	0.5996	0.822400	-0.9737
0.0597	0.7006	0.802698	-0.1060	0.3203	0.6996	0.838115	-0.8049
0.0404	0 7997	0.820255	-0.0609	0.1604	0.7995	0.844991	-0.5639
0.0211	0.8987	0.838557	-0.0346	0.0798	0.9002	0.851663	-0.3113
0.3603	0.0998	0.727218	-0.2368	0.8101	0.0998	0.794962	-0.4479
0.3198	0.2002	0.742496	-0.4967	0.7198	0.2001	0.806299	-0.8192
0.2802	0.3000	0.757158	-0.6049	0.6299	0.3001	0.816348	-1.0680
0.2402	0.3999	0.771428	-0.6131	0.5400	0.4000	0.825103	-1.1939
0.1998	0.5002	0.785612	-0.5667	0.4499	0.5002	0.832605	-1.1908
0.1599	0.6001	0.799677	-0.4688	0.3598	0.6002	0.838995	-1.0832
0.1201	0.7001	0.813919	-0.3586	0.2698	0.7002	0.844553	-0.8937
0.0801	0.7999	0.828304	-0.2475	0.1799	0.8001	0.849485	-0.6483
0.0401	0.9000	0.842818	-0.1134	0.0901	0.8998	0.853865	-0.3564
				0.4922	0.4415	0.826157	-1.1846
			T= 30	18.15 K			
0.0900	0.1001	0.693647	-0.0258	0.5394	0.1010	0.746705	-0.3308
0.0806	0.2001	0.708795	-0.0576	0.4801	0.2000	0.760931	-0.6577
0.0698	0.3001	0.724180	-0.0447	0.4198	0.3003	0.774360	-0.8387
0.0615	0.3987	0.740221	-0.0291	0.3600	0.4000	0.786965	-0.9036
0.0502	0.5005	0.757042	0.0061	0.3003	0.4997	0.798830	-0.8601
0.0400	0.0005	0.774414	0.0294	0.2599	0.6000	0.010207	-0.7599
0.0289	0.7008	0.752033	0.0360	0.1805	0.0994	0.821255	-0.0024
0.0200	0.7555	0.831986	0.0200	0.0604	0.8000	0.832144	-0.2245
0.1799	0.0000	0.702762	-0.1167	0.7197	0.1003	0.774765	-0.4139
0.1586	0.2066	0,719040	-0.2443	0.6399	0.2002	0.787347	-0.7780
0.1401	0.3001	0.733356	-0.2697	0.5599	0.3001	0.798702	-1.0093
0.1204	0.4001	0.748918	-0.2503	0.4788	0.4016	0.809057	-1.1106
0.1000	0.5002	0.764818	-0.2108	0.4000	0.5000	0.818148	-1.1139
0.0802	0.6001	0.781218	-0.1573	0.3203	0.5996	0.826161	-0.9837
0.0597	0.7006	0.798307	-0.1195	0.2403	0.6996	0.833742	-0.8161
0.0404	0.7997	0.815832	-0.0721	0.1604	0.7995	0.840580	-0.5739
0.0211	0.8987	0.834090	-0.0418	0.0798	0.9002	0.847198	-0.3177
0.3603	0.0998	0.722902	-0.2270	0.8101	0.0998	0.790918	-0.4499
0.3198	0.2002	0.738170	-0.4949	0.7198	0.2001	0.802181	-0.8236
0.2802	0.3000	0.752822	-0.6087	0.6299	0.3001	0.812151	-1.0727
0.2402	0.3999	0.767087	-0.6217	0.5400	0.4000	0.820843	-1.1995
0.1998	0.5002	0.781263	-0.5787	0.4499	0.5002	0.828298	-1.1978
0.1599	0.6001	0.795318	-0.4829	0.3598	0.6002	0.834652	-1.0918
0.1201	0.7001	0.809532	-0.3716	0.2698	0.7002	0.840180	-0.9036
0.0801	0.7999	0.82388/	-0.2590	0.1799	0.8001	0.8450/3	-0.6575
0.0401	0.9000	0.838333	-0.1204	0.0901	0.8998	0.849400	-0.3025
				0.4922	0.4415	0.021073	-1.1910
			T= 31	3.15 K			
0.0900	0.1001	0.689263	-0.0165	0.5394	0.1010	0.742427	-0.3240
0.0806	0.2001	0.704427	-0.0584	0.4801	0.2000	0.756634	-0.6579
0.0698	0.3001	0.719820	-0.0524	0.4198	0.3003	0.770034	-0.8424

Table 3 (Continued)

<i>x</i> ₁	<i>x</i> ₂	$ ho ({ m g}{ m cm}^{-3})$	$V^{\rm E} ({\rm cm}^3{ m mol}^{-1})$	<i>x</i> ₁	<i>x</i> ₂	$ ho ({ m g}{ m cm}^{-3})$	$V^{\rm E} ({\rm cm}^3{ m mol}^{-1})$
0.0615	0 3987	0 735861	_0.0411	0 3600	0.4000	0.782622	_0.9111
0.0502	0.5005	0.752672	0.0078	0.3003	0.4000	0.702022	0.8705
0.0302	0.5005	0.752072	0.0147	0.3003	0.4337	0.754474	0.7729
0.0400	0.0003	0.770031	0.0217	0.2399	0.0000	0.803521	-0.7728
0.0289	0.7008	0.788232	0.0217	0.1805	0.0994	0.010044	-0.0149
0.0200	0.7999	0.807430	0.0121	0.1197	0.8000	0.027710	-0.4250
0.0102	0.0990	0.627511	0.0121	0.0004	0.6994	0.030210	-0.2507
0.1799	0.1000	0.698368	-0.1037	0.7197	0.1003	0.770609	-0.4130
0.1586	0.2066	0.714660	-0.2424	0.6399	0.2002	0.783140	-0.7809
0.1401	0.3001	0.728984	-0.2747	0.5599	0.3001	0.794441	-1.0140
0.1204	0.4001	0.744551	-0.2607	0.4788	0.4016	0.804750	-1.1168
0.1000	0.5002	0.760449	-0.2246	0.4000	0.5000	0.813810	-1.1223
0.0802	0.6001	0.776834	-0.1715	0.3203	0.5996	0.821799	-0.9936
0.0597	0.7006	0.793906	-0.1336	0.2403	0.6996	0.829352	-0.8265
0.0404	0.7997	0.811401	-0.0835	0.1604	0.7995	0.836155	-0.5828
0.0211	0.8987	0.829619	-0.0489	0.0798	0.9002	0.842725	-0.3233
0.3603	0.0998	0.718545	-0.2153	0.8101	0.0998	0.786838	-0.4513
0.3198	0.2002	0.733810	-0.4920	0.7198	0.2001	0.798029	-0.8274
0.2802	0.3000	0.748459	-0.6122	0.6299	0.3001	0.807928	-1.0773
0.2402	0.3999	0.762720	-0.6299	0.5400	0.4000	0.816560	-1.2049
0.1998	0.5002	0.776895	-0.5909	0.4499	0.5002	0.823971	-1.2045
0.1599	0.6001	0.790940	-0.4966	0.3598	0.6002	0.830294	-1.1002
0.1201	0.7001	0.805139	-0.3856	0.2698	0.7002	0.835792	-0.9128
0.0801	0.7999	0.819458	-0.2699	0.1799	0.8001	0.840649	-0.6660
0.0401	0.9000	0.833882	-0.1271	0.0901	0.8998	0.844928	-0.3679
				0.4922	0.4415	0.817569	-1.1973
			T- 3	18 15 K			
0.000	0 1001	0.684842	0.0047	0.530/	0 1010	0 738104	0 3131
0.0300	0.1001	0.004042	0.0576	0.3334	0.1010	0.752200	-0.5151
0.0000	0.2001	0.715420	0.0590	0.4001	0.2000	0.752255	-0.0330
0.0055	0.3001	0.721/77	-0.0585	0.4150	0.3003	0.703073	-0.0444
0.0015	0.5967	0.731477	-0.0328	0.3000	0.4000	0.776232	-0.9170
0.0302	0.5005	0.746267	-0.0227	0.5005	0.4997	0.790095	-0.8797
0.0400	0.0005	0.703031	-0.0002	0.2599	0.6000	0.001335	-0.7645
0.0289	0.7008	0.765659	0.0008	0.1605	0.0994	0.012455	-0.0205
0.0200	0.7999	0.802991	0.0032	0.1197	0.8000	0.020201	-0.4554
0.0102	0.8998	0.823032	0.0049	0.0604	0.8994	0.833739	-0.2367
0.1799	0.1000	0.093933	-0.0872	0.7197	0.1003	0.700410	-0.4083
0.1586	0.2066	0.710248	-0.2387	0.6399	0.2002	0.778898	-0.7810
0.1401	0.3001	0.724582	-0.2783	0.5599	0.3001	0.790147	-1.0161
0.1204	0.4001	0.740158	-0.2703	0.4788	0.4016	0.800417	-1.1211
0.1000	0.5002	0.756061	-0.2385	0.4000	0.5000	0.809441	-1.1278
0.0802	0.6001	0.772434	-0.1860	0.3203	0.5996	0.81/415	-1.0018
0.0597	0.7006	0.789487	-0.1472	0.2403	0.6996	0.824947	-0.8359
0.0404	0.7997	0.806960	-0.0951	0.1604	0.7995	0.831/20	-0.5914
0.0211	0.8987	0.825137	-0.0556	0.0798	0.9002	0.838245	-0.3286
0.3603	0.0998	0.714144	-0.1995	0.8101	0.0998	0.782718	-0.4493
0.3198	0.2002	0.729412	-0.4862	0.7198	0.2001	0.793843	-0.8283
0.2802	0.3000	0.744064	-0.6138	0.6299	0.3001	0.803677	-1.0797
0.2402	0.3999	0.758331	-0.6375	0.5400	0.4000	0.812251	-1.2081
0.1998	0.5002	0.772503	-0.6020	0.4499	0.5002	0.819622	-1.2094
0.1599	0.6001	0.786544	-0.5099	0.3598	0.6002	0.825917	-1.1071
0.1201	0.7001	0.800732	-0.3994	0.2698	0.7002	0.831389	-0.9210
0.0801	0.7999	0.815019	-0.2809	0.1799	0.8001	0.836212	-0.6736
0.0401	0.9000	0.829402	-0.1334	0.0901	0.8998	0.840448	-0.3729
				0.4922	0.4415	0.813235	-1.2010
			T= 32	23.15 K			
0.0900	0.1001	0.680384	0.0090	0.5394	0.1010	0.733739	-0.3026
0.0806	0.2001	0.695593	-0.0554	0.4801	0.2000	0.747939	-0.6546
0.0698	0.3001	0.711013	-0.0649	0.4198	0.3003	0.761296	-0.8475
0.0615	0.3987	0.727073	-0.0650	0.3600	0.4000	0.773854	-0.9232
0.0502	0 5005	0.743885	-0.0379	0 3003	0 4997	0 785704	-0.8908
0.0400	0.6003	0.761216	-0.0151	0 2399	0.6000	0 797136	-0 7977
0.0289	0 7008	0 779421	-0.0090	0 1803	0 6994	0.808016	-0.6383
0.0200	0.7999	0.798541	-0.0082	0.1197	0.8006	0.818835	-0.4429
0.0102	0.8998	0.818546	-0.0012	0.0604	0.8994	0.829257	-0.2423
0.1799	0.1000	0.689460	-0.0691	0.7197	0.1003	0.762168	-0.4052
0.1586	0.2066	0.705809	-0.2354	0.6399	0.2002	0.774627	-0.7839
0.1401	0 3001	0 720151	-0.2814	0.5599	0.3001	0.785825	-1.0202
0 1204	0.4001	0.735749	-0.2813	0.4788	0.4016	0.796058	-1 1268
0.1000	0 5002	0 751662	-0.2539	0.4000	0.5000	0.805064	-1 1362
0.0802	0.6001	0.768014	-0 1997	0 3203	0 5996	0.813015	-1.0108
0.0597	0 7006	0.785058	-0.1609	0.2403	0.6996	0.820526	-0.8452
0.0404	0.7997	0.802511	-0.1063	0.1604	0 7995	0.827274	-0 5995
0.0211	0.8987	0.820656	-0.0623	0.0798	0.0002	0.823750	_0.3333
0.0211	0.0907	0.020000	_0.0025	0.0756	0.0002	0.778556	_0.3331
0.3108	0.0998	0.709700	_0.1825	0.0101	0.0998	0.789624	_0.4450
0.2802	0.2002	0.724979	-0.4002	0.7198	0.2001	0.7003024	_1 0840
2.2002	0.0000	5,755015	0.0101	0.0235	5.5001	0.100000	1.0010

Table 3 (Continued)

<i>x</i> ₁	<i>x</i> ₂	ρ (g cm ⁻³)	$V^{\rm E}$ (cm ³ mol ⁻¹)	<i>x</i> ₁	<i>x</i> ₂	$ ho ({ m g}{ m cm}^{-3})$	$V^{\rm E}$ (cm ³ mol ⁻¹)
0.2402	0.3999	0.753912	-0.6446	0.5400	0.4000	0.807924	-1.2140
0.1998	0.5002	0.768090	-0.6133	0.4499	0.5002	0.815255	-1.2160
0.1599	0.6001	0.782133	-0.5236	0.3598	0.6002	0.821523	-1.1148
0.1201	0.7001	0.796315	-0.4137	0.2698	0.7002	0.826969	-0.9289
0.0801	0.7999	0.810574	-0.2919	0.1799	0.8001	0.831768	-0.6812
0.0401	0.9000	0.824918	-0.1391	0.0901	0.8998	0.835963	-0.3772
				0.4922	0.4415	0.808885	-1.2072

Table 4

Parameters A_p of Eq. (2) and the corresponding PD and σ of the fits for the binary systems.

T (K)	A ₀	<i>A</i> ₁	A ₂	A ₃	A4	PD (%)	$\sigma({ m cm^3mol^{-1}})$
1-Butanol (1)+cy	clohexylamine (2)						
288.15	-4.9739	-0.9516	0.7023	0.4039		0.32	0.0051
293.15	-5.0031	-0.9213	0.6499	0.3867		0.33	0.0052
298.15	-5.0293	-0.8900	0.6059	0.3746		0.32	0.0051
303.15	-5.0540	-0.8627	0.5612	0.3680		0.32	0.0050
308.15	-5.0756	-0.8377	0.5060	0.3435		0.34	0.0051
313.15	-5.0984	-0.8135	0.4846	0.3432		0.32	0.0049
318.15	-5.1092	-0.7783	0.4584	0.3377		0.30	0.0047
323.15	-5.1324	-0.7509	0.4439	0.2854		0.29	0.0047
1-Butanol (1) + n-	heptane (2)						
288.15	0.6041	-0.6367	0.1188	-0.2357	0.3376	0.93	0.0021
293.15	0.6647	-0.6839	0.0740	-0.3176	0.4949	1.05	0.0028
298.15	0.7387	-0.7319	0.0185	-0.4031	0.6618	1.03	0.0030
303.15	0.8184	-0.7838	-0.0179	-0.4943	0.8115	1.07	0.0035
308.15	0.9107	-0.8386	-0.0530	-0.6071	0.9734	1.06	0.0039
313.15	1.0113	-0.8951	-0.0820	-0.7304	1.1441	1.11	0.0046
318.15	1.1330	-0.9522	-0.1015	-0.8466	1.3644	1.10	0.0050
323.15	1.2605	-1.0223	-0.1169	-0.9907	1.5496	1.11	0.0053
Cyclohexylamine	(1)+n-heptane (2)						
288.15	1.2537	-0.5444	0.3720	0.2252		0.41	0.0017
293.15	1.2065	-0.5553	0.3288	0.2399		0.42	0.0016
298.15	1.1583	-0.5640	0.2953	0.2351		0.43	0.0016
303.15	1.1035	-0.5708	0.2718	0.2351		0.48	0.0018
308.15	1.0471	-0.5766	0.2592	0.2168		0.50	0.0018
313.15	0.9869	-0.5830	0.2406	0.2185		0.56	0.0018
318.15	0.9238	-0.5905	0.2248	0.2139		0.59	0.0018
323.15	0.8596	-0.5919	0.2151	0.1979		0.50	0.0015

For the determination of PRSV parameters of a mixture (*a* and *b*), two different types of mixing rules are used: vdW1 and TCBT.

The vdW1 mixing rule [8] can be expressed by the following equations:

$$a = \sum_{i} \sum_{j} x_{i} x_{j} (a_{i} a_{j})^{1/2} [1 - k_{ij} + l_{ij} (x_{i} - x_{j})]$$
(6)

$$b = \sum_{i} \sum_{j} x_{i} x_{j} (b_{i} b_{j})^{1/2} (1 - m_{ij})$$
⁽⁷⁾

where k_{ij} , l_{ij} and m_{ij} are the binary interaction parameters. The TCBT mixing rule [9] developed for no reference pressure conditions, relates the excess molar Gibbs energy, G^E , to the excess molar

Gibbs energy based on the van der Waals reference fluid (vdW), G_{vdW}^E , can be presented as:

$$\frac{G^{E}}{RT} - \frac{G^{E}_{vdW}}{RT} + (Z - Z_{vdW})$$

$$= \ln\left[\left(\frac{V^{*}_{vdW} - 1}{V^{*} - 1}\right)\left(\frac{b_{vdW}}{b}\right)\right]$$

$$- \frac{1}{w - u}\left[\frac{a^{*}}{b^{*}}\ln\left(\frac{V^{*} + w}{V^{*} + u}\right) - \frac{a^{*}_{vdW}}{b^{*}_{vdW}}\ln\left(\frac{V^{*}_{vdW} + w}{V^{*}_{vdW} + u}\right)\right]$$
(8)

where G_{vdW}^E is calculated for the PRSV CEOS.

Table 5

Parameters B_i of Eq. (3) and the corresponding PD and σ of the fits for the 1-butanol (1)+cyclohexylamine (2)+n-heptane (3) system.

Т(К)	288.15	293.15	298.15	303.15	308.15	313.15	318.15	323.15
1-Butanol(1)+cycl	ohexylamine(2)+n	-heptane(3)						
B ₀	$-1.6919 imes 10^{-2}$	-1.6751×10^{-2}	$-1.6544 imes 10^{-2}$	$-1.6400 imes 10^{-2}$	$-1.6268 imes 10^{-2}$	-1.6111×10^{-2}	$-1.5950 imes 10^{-2}$	-1.5760×10^{-2}
B ₁	$-3.2063 imes 10^{-2}$	$-3.1811 imes 10^{-2}$	-3.1234×10^{-2}	$-3.0879 imes 10^{-2}$	$-3.0565 imes 10^{-2}$	$-3.0251 imes 10^{-2}$	$-2.9764 imes 10^{-2}$	-2.9353×10^{-2}
B ₂	-3.0218×10^{-2}	$-2.9946 imes 10^{-2}$	$-2.9738 imes 10^{-2}$	$-2.9609 imes 10^{-2}$	$-2.9530 imes 10^{-2}$	$-2.9271 imes 10^{-2}$	$-2.8993 imes 10^{-2}$	-2.8394×10^{-2}
B ₃	$2.4032 imes 10^{-2}$	$2.4608 imes 10^{-2}$	$2.4918 imes 10^{-2}$	2.5443×10^{-2}	$2.6158 imes 10^{-2}$	$2.6774 imes 10^{-2}$	$2.6868 imes 10^{-2}$	$2.7546 imes 10^{-2}$
B ₄	$1.0109 imes 10^{-2}$	1.0444×10^{-2}	$1.1550 imes 10^{-2}$	1.2297×10^{-2}	1.3102×10^{-2}	1.3440×10^{-2}	1.3856×10^{-2}	$1.3493 imes 10^{-2}$
B ₅	$4.0160 imes 10^{-2}$	$3.9717 imes 10^{-2}$	$3.8388 imes 10^{-2}$	$3.7578 imes 10^{-2}$	$3.6888 imes 10^{-2}$	$3.6402 imes 10^{-2}$	$3.5638 imes 10^{-2}$	3.4614×10^{-2}
B ₆	$-8.1166 imes 10^{-3}$	$-8.6672 imes 10^{-3}$	$-9.3075 imes 10^{-3}$	$-1.0006 imes 10^{-2}$	$-1.0944 imes 10^{-2}$	$-1.1547 imes 10^{-2}$	$-1.1726 imes 10^{-2}$	-1.2577×10^{-2}
B ₇	$7.4599 imes 10^{-3}$	$7.0070 imes 10^{-3}$	$5.8249 imes 10^{-3}$	$5.0969 imes 10^{-3}$	4.3155×10^{-3}	$3.9007 imes 10^{-3}$	3.3531×10^{-3}	$3.5053 imes 10^{-3}$
B ₈	$-4.1141 imes 10^{-3}$	$-5.0603 imes 10^{-3}$	$-5.1071 imes 10^{-3}$	$-5.5693 imes 10^{-3}$	$-6.1328 imes 10^{-3}$	$-7.2428 imes 10^{-3}$	$-7.6723 imes 10^{-3}$	$-8.1544 imes 10^{-3}$
PD (%)	0.60	0.59	0.59	0.58	0.58	0.58	0.57	0.58
σ (cm ³ mol ⁻¹)	0.0097	0.0096	0.0095	0.0095	0.0094	0.0094	0.0093	0.0094

Fig. 1. Experimental values of *V*^E data for system (a) 1-butanol (1)+ cyclohexylamine (2), (b) 1-butanol (1)+ n-heptane (2), (c) cyclohexylamine (1)+ n-heptane (2). Symbols refer to experimental points at: (■) 288.15 K; (□) 293.15 K; (●) 298.15 K; (○) 303.15 K; (▲) 308.15 K; (△) 313.15 K; (♦) 318.15 K; (◊) 323.15 K, while the lines represent the results calculated by the Eq. (2).

Parameters a_{vdW} and b_{vdW} are determined by Eqs. (11) and (12), whereas the reduced parameters a^* , b^* , a^*_{vdW} and b^*_{vdW} are obtained from the equations:

$$a^* = \frac{Pa}{R^2 T^2} \quad b^* = \frac{Pb}{RT} \tag{9}$$

 $V^* = V/b = Z/b^*$ is the reduced liquid volume at *P* and *T* of the mixture. The compressibility factors *Z* and Z_{vdW} are calculated from PRSV equation. Bearing in mind that equation for V^* evaluation does not have an explicit solution, an iterative technique was required for the calculation.

In this work, the NRTL equation [34] is used as the G^{E} model:

$$\frac{G^{\rm E}}{RT} = \sum_{i} x_i \frac{\sum_j x_j G_{ji} \tau_{ji}}{\sum_k x_k G_{ki}}$$
(10)

For a binary mixture the following equations are incorporated:

$$\begin{aligned} G_{12} &= \exp(-\alpha_{12}\tau_{12}) \quad G_{21} &= \exp(-\alpha_{12}\tau_{21}) \\ \tau_{12} &= \frac{(g_{12} - g_{22})}{RT} = \frac{\Delta g_{12}}{RT} \quad \tau_{21} = \frac{(g_{21} - g_{11})}{RT} = \frac{\Delta g_{21}}{RT} \end{aligned}$$
(11)

and for a ternary mixture:

$$\tau_{ij}' = \tau_{ij} + \frac{\sum_{k=1}^{n} x_k \Delta g_{ijk}}{RT}$$
(12)

The Δg_{12} and Δg_{21} denote the binary energy parameters, while Δg_{ijk} is the ternary contribution.

For the temperature range, model parameters were used as temperature dependent:

$$Y = Y_1 + Y_2 T (13)$$

where $Y = k_{ij}$, l_{ij} , m_{ij} , Δg_{12} and Δg_{21} . All models used here for V^{E} calculations are obtained applying sets of corresponding equations

Correlation of the V^{E} data by the temperature independent PRSV CEOS models for the investigated binary systems from T=(288.15 to 323.15 K) and atmospheric pressure.

T (K)	$k_{ij,1}$	$l_{ij,1}$	$m_{ij,1}$	$\Delta g_{12,1}$ (J mol ⁻¹)	$\Delta g_{21,1}$ (J mol ⁻¹)	PD (%)	$\sigma({ m cm^3mol^{-1}})$
1-Butanol (1)+	cyclohexylamine (2))					
288.15							
vdW1-2 ^a	0.1774		0.0412			3.30	0.0502
VOW 1-3	0.0196	-0.0307	0.0214	0 272112 \(104)	0 550 452 \(\core 104)	1.50	0.0216
TCBT-2 ^d	0.0957			-0.373112×10^{4} 0.265661×10^{4}	0.339433×10^{4} 0.221502×10^{4}	0.52	0.0288
202.45	010007			01200001 / 10		0.02	010070
293.15 vdW/1_2	0 1720		0.0413			3 20	0 0491
vdW1-2 vdW1-3	0.0205	-0.0285	0.0217			1.39	0.0203
TCBT-2				-0.378598×10^4	0.570172×10^4	1.36	0.0228
TCBT-3	0.0942			0.254508×10^4	0.208372×10^4	0.51	0.0078
298.15							
vdW1-2	0.1654		0.0411			3.14	0.0481
vdW1-3	0.0211	-0.0263	0.0218	0.050400 404	0.555000 404	1.31	0.0191
TCB1-2 TCBT_3	0.0963			$-0.3/8103 \times 10^{4}$ 0.258348 × 10 ⁴	0.555980×10^4 0.205619 $\times 10^4$	1.56	0.0260
	0.0505			0.230340 × 10	0.205015 × 10	0.40	0.0075
303.15	0 1596		0.0400			2.00	0.0472
vdW1-2 vdW1-3	0.1586	-0.0243	0.0409			1 23	0.0472
TCBT-2	0.0217	0.02 15	0.0220	$-0.380179 imes 10^4$	$0.553076 imes 10^4$	1.55	0.0264
TCBT-3	0.0952			0.249640×10^4	0.194296×10^4	0.45	0.0071
308.15							
vdW1-2	0.1512		0.0405			3.08	0.0466
vdW1-3	0.0220	-0.0225	0.0221			1.15	0.0169
TCBT-2				-0.382402×10^4	0.551632×10^4	1.52	0.0260
ICBI-3	0.0928			0.23/0//×104	0.180111×10^{4}	0.43	0.0070
313.15							
vdW1-2	0.1425	0.0200	0.0399			3.08	0.0464
VOVVI-3 TCRT-2	0.0240	-0.0209	0.0225	0.383838 × 104	0 548503 v 10 ⁴	1.08	0.0160
TCBT-2 TCBT-3	0.0931			$-0.3335338 \times 10^{-0.234511} \times 10^{-0.234511} \times 10^{-0.234511}$	0.173797×10^4	0.42	0.0068
210 15							
vdW1-2	0 1297		0.0385			3.05	0.0457
vdW1-3	0.0234	-0.0191	0.0224			1.07	0.0158
TCBT-2				-0.387932×10^4	0.555983×10^4	1.20	0.0202
TCBT-3	-0.0395			$0.743235 imes 10^4$	$-0.549749 imes 10^4$	0.39	0.0070
323.15							
vdW1-2	0.1169		0.0370			3.12	0.0463
vdW1-3	0.0233	-0.0181	0.0225	0.220602104	0 552052 104	1.05	0.0151
TCBT-3	0.0938			$-0.389695 \times 10^{-0.3}$ 0.231350 $\times 10^{4}$	0.555955×10^{4} 0.160995 × 10 ⁴	0.35	0.0208
200.15 222	15						
288.15-323. vdW1_2	15		0.0237			3.84	0.0559
vdW1-2 vdW1-3	0.0087	-0.0238	0.0203			1.36	0.0205
TCBT-2				0.187199×10^4	-0.221204×10^{4}	2.69	0.0443
TCBT-3	-0.0104			$0.190331 imes 10^4$	$-0.261544 imes 10^4$	1.85	0.0276
1 Dute - 1(1)	(2)						
1-Butanoi (1) 1 288 15	n-neptane (2)						
vdW1-2	0.0503		-0.0237			5.69	0.0129
vdW1-3	-0.1621	-0.0617	-0.0515			1.25	0.0030
TCBT-2				0.376634×10^4	0.227849×10^{3}	3.66	0.0091
TCB1-3	-0.0620			0.355326×10^{3}	0.764664×10^{3}	1.36	0.0034
293.15							
vdW1-2	0.0544	0.0000	-0.0230			6.02	0.0153
TCBT_2	-0.1649	-0.0632	-0.0528	0.370477×10^4	0.161360×10^{3}	1.54	0.0045
TCBT-3	-0.0608			0.375858×10^3	0.772363×10^{5}	0.96	0.0023
298 15							
vdW1-2	0.0582		-0.0223			6.15	0.0177
vdW1-3	-0.1688	-0.0648	-0.0543			1.75	0.0059
TCBT-2				0.366426×10^4	0.866426×10^2	4.79	0.0156
TCBT-3	-0.0597			0.386906×10^{3}	0.773314×10^{5}	0.78	0.0021
303.15							
vdW1-2	0.0621	0.00F :	-0.0216			6.42	0.0205
VdW1-3 TCBT-2	-0.1694	-0.0654	-0.0555	0.357706 104	$0.463472 + 10^{2}$	1.95	0.0075
TCBT-2 TCBT-3	-0.0589			0.39700×10^{-3} 0.390291×10^{-3}	0.772120×10^{-5}	0.78	0.0025

Table 6 (Continued)

Т(К)	k _{ij,1}	l _{ij,1}	<i>m</i> _{ij,1}	$\Delta g_{12,1}$ (J mol ⁻¹)	$\Delta g_{21,1} (J mol^{-1})$	PD (%)	$\sigma ({ m cm}^3{ m mol}^{-1})$
308.15							
vdW1-2	0.0664		-0.0208			6.73	0.0238
vdW1-3	-0.1702	-0.0662	-0.0567			2.15	0.0094
TCBT-2				0.353250×10^4	$-0.164733 imes 10^2$	5.49	0.0207
TCBT-3	-0.0578			$0.401707 imes 10^3$	$0.775918 imes 10^5$	0.73	0.0026
313.15							
vdW1-2	0.0705		-0.0200			7.04	0.0276
vdW1-3	-0.1694	-0.0664	-0.0578	0.0.40000 4.04		2.42	0.0117
TCBT-2	0.0562			0.348922×10^4	-0.736984×10^{2}	5.79	0.0244
ICBI-3	-0.0562			0.442648 × 10 ³	0.790414×10^{3}	0.91	0.0032
318.15	0.0720		0.0102			7.40	0.0225
vdW/1-2	0.0739	0.0647	-0.0195			7.49	0.0325
TCBT_2	-0.1025	-0.0047	-0.0381	0.344477×10^{4}	0.125838×10^{3}	6.26	0.0140
TCBT-3	-0.0563			0.404658×10^3	0.782284×10^{5}	0.20	0.0029
323 15							
vdW1-2	0.0783		-0.0184			7.83	0.0374
vdW1-3	-0.1618	-0.0651	-0.0593			3.06	0.0173
TCBT-2				$0.339621 imes 10^4$	$-0.173275 imes 10^{3}$	6.53	0.0334
TCBT-3	0.0160			$\textbf{0.407822}\times10^4$	0.776788×10^5	0.83	0.0038
288.15-323.	.15						
vdW1-2	0.0601		-0.0220			7.47	0.0274
vdW1-3	0.0448	-0.0066	-0.0244			6.56	0.0228
TCBT-2				$0.337307 imes 10^4$	0.149487×10^{3}	85.58	0.2829
TCBT-3	-0.1257			0.342645×10^4	$-0.413447 imes 10^4$	10.32	0.0391
Cyclobeyylam	ine (1) + n_hentane (*	2)					
288 15	ine (1) + n-neptane (2	2)					
vdW1-2	0.0446		-0.0120			3.41	0.0127
vdW1-3	-0.0527	-0.0209	-0.0256			1.84	0.0075
TCBT-2				0.208254×10^4	-0.118697×10^{3}	2.86	0.0125
TCBT-3	-0.0977			0.623552×10^4	-0.497534×10^4	0.58	0.0023
293.15							
vdW1-2	0.0423	0.0100	-0.0121			3.15	0.0114
VdW1-3	-0.0497	-0.0198	-0.0254	0.207012 104	0 12 40 42 103	1.66	0.0065
TCBT-2 TCBT-3	0.0988			0.207913×10^{-6} 0.622172×10^{4}	-0.134042×10^{3} 0.500575 $\times 10^{4}$	2.59	0.0121
200.45	0.0500			0.022172 × 10	0.000070 × 10	0.00	0.0021
298.15	0.0407		0.0122			200	0.0102
vdW/1-2	0.0407	0.0186	-0.0122			2.00	0.0102
TCBT-2	-0.0434	-0.0100	-0.0250	0.211042×10^4	-0.172676×10^{3}	2.38	0.0105
TCBT-3	-0.1007			0.627303×10^4	-0.507006×10^4	0.42	0.0019
303.15							
vdW1-2	0.0387		-0.0123			2.82	0.0095
vdW1-3	-0.0444	-0.0181	-0.0250			1.49	0.0052
TTCBT-2				0.212412×10^4	$-0.200050 imes 10^3$	2.35	0.0103
TCBT-3	-0.1042			0.644987×10^4	$-0.520206 imes 10^4$	0.82	0.0030
308.15							
vdW1-2	0.0373		-0.0123			2.79	0.0091
vdW1-3	-0.0425	-0.0175	-0.0249			1.45	0.0048
TCBT-2 TCBT-3	-0.1056			0.214298×10^4 0.645284×10^4	-0.229477×10^{3} -0.523901×10^{4}	2.36	0.0098
242.45	0.1050			0.0132017 10	0.525501 × 10	0.00	0.0050
313.15 vdW/1-2	0.0254		0.0124			2 72	0.0094
vdW/1-2	_0.0374	-0.0161	-0.0124			1 49	0.0045
TCBT-2	0.0371	0.0101	0.02 15	0.217017×10^4	-0.264962×10^{3}	2.35	0.0090
TCBT-3	-0.1062			0.638214×10^4	-0.523970×10^{4}	0.81	0.0028
318 15							
vdW1-2	0.0338		-0.0125			2.68	0.0079
vdW1-3	-0.0315	-0.0146	-0.0236			1.46	0.0043
TCBT-2	0.0010	0.01.10	0.0290	0.218914×10^4	-0.293958×10^{3}	2.34	0.0086
TCBT-3	-0.1081			0.641189×10^4	$-0.529331 imes 10^4$	0.84	0.0027
322.15							
vdW1-1							
vdW1-2	0.0321		-0.0126			2,69	0.0074
vdW1-3	-0.0272	-0.0134	-0.0230			1.41	0.0038
TCBT-2				0.221445×10^4	-0.327500×10^{3}	2.34	0.0081
TCBT-3	-0.1118			0.657565×10^4	-0.541694×10^4	0.71	0.0020

Table 6 (Continued)

T (K)	$k_{ij,1}$	l _{ij,1}	$m_{ij,1}$	$\Delta g_{12,1}$ (J mol ⁻¹)	$\Delta g_{21,1} (J mol^{-1})$	PD (%)	$\sigma ({ m cm}^3{ m mol}^{-1})$
288.15–323.15 vdW1-2 vdW1-3 TCBT-2 TCBT-3	0.0186 -0.0040 -0.0221	-0.0091	-0.0154 -0.0190	$\begin{array}{c} 0.212858 \times 10^{4} \\ 0.126546 \times 10^{4} \end{array}$	$\begin{array}{c} -0.218262 \times 10^{3} \\ -0.418681 \times 10^{3} \end{array}$	6.46 1.91 16.82 2.51	0.0224 0.0068 0.0581 0.0092

^a Eqs. (6), (7) and (13); l_{ij} = 0. ^b Eqs. (6), (7) and (13).

^c Eqs. (8)-(11) and (13); $k_{ij} = l_{ij} = m_{ij} = 0$; $\alpha_{ij} = 0.3$ (found by trial and error and set to 0.3 in all cases). ^d Eqs. (8)-(11) and (13); $l_{ij} = m_{ij} = 0$; $\alpha_{ij} = 0.3$.

Table 7

Correlation of the V ^E data b	v the tem	perature de	pendent PRSV	CEOS model	s for the inv	vestigated binar	v s	vstems from $T =$	(288.1)	5 to 323.15 K) and atmos	pheric i	oressure.

	$k_{ij,1} k_{ij,2} (K^{-1})$	$l_{ij,1} \ l_{ij,2} \ (\mathrm{K}^{-1})$	$m_{ij,1} m_{ij,2} (K^{-1})$	$\Delta g_{12,1} \text{ (J mol}^{-1}\text{)} \\ \Delta g_{12,2} \text{ (J mol}^{-1}\text{ K}^{-1}\text{)}$	$\Delta g_{21,1} \text{ (J mol}^{-1}\text{)} \\ \Delta g_{22,2} \text{ (J mol}^{-1}\text{ K}^{-1}\text{)}$	PD (%)	σ (cm ³ mol ⁻¹)
1-Butanol (1)+	cyclohexylamine (2)						
vdW1-2 ^a	0.3402 0.610 × 10 ⁻³		0.252×10^{-1} 0.499 × 10^{-4}			3.14	0.0476
vdW1-3 ^b	-0.523×10^{-1}	-0.1371	0.433×10^{-2} 0.740×10^{-2}			1.22	0.0180
TCBT-2 ^c	0.242×10^{-3}	0.371×10^{-3}	0.478×10^{-4}	$-0.293541 imes 10^4$	0.691550×10^4	1.80	0.0297
				$-0.276804 imes 10^{1}$	$-0.480520 imes 10^{1}$		
TCBT-3 ^d	0.396×10^{-1}			$\begin{array}{c} 0.529623 \times 10^{3} \\ 0.539652 \times 10^{4} \end{array}$	$\begin{array}{c} 0.373858 \times 10^{4} \\ -0.825143 \times 10^{1} \end{array}$	1.21	0.0200
1-Butanol (1)+	n-heptane (2)						
vdW1-2	-0.1263 0.624×10^{-3}		-0.583×10^{-1} 0.122×10^{-3}			6.76	0.0250
vdW1-3	-0.5273 0.117 × 10 ⁻²	-0.1492 0.272 × 10 ⁻³	-0.336×10^{-1} -0.736×10^{-4}			2.15	0.0104
TCBT-2				0.403468×10^4 -0.117304 $\times 10^1$	0.548120×10^4 -0.180907 × 10 ²	10.53	0.0467
TCBT-3	-0.687×10^{-1}			$\begin{array}{c} -0.117304 \times 10^{4} \\ 0.344494 \times 10^{4} \\ -0.189291 \times 10^{2} \end{array}$	$\begin{array}{c} -0.462240 \times 10^{4} \\ 0.257277 \times 10^{2} \end{array}$	6.79	0.0257
Cyclohexylami	ne (1) + n-heptane (2)						
vdW1-2	0.959×10^{-1} -0.190 × 10 ⁻³		-0.157×10^{-1} 0.109 × 10 ⁻⁴			2.98	0.0101
vdW1-3	-0.1288 0 283 × 10 ⁻³	-0.516×10^{-1} 0.111 × 10 ⁻³	-0.260×10^{-1} 0.389 × 10 ⁻⁵			1.58	0.0055
TCBT-2				0.211291×10^{3} 0.655445 × 10 ¹	0.219229×10^4 -0.804924 × 10 ¹	3.66	0.0118
TCBT-3	-0.338×10^{-1}			$\begin{array}{c} -0.849853 \times 10^{4} \\ 0.429689 \times 10^{4} \end{array}$	$\begin{array}{c} -0.421199 \times 10^{3} \\ 0.224698 \times 10^{1} \end{array}$	2.43	0.0083

^a Eqs. (6), (7) and (13); $l_{ij} = 0$.

^b Eqs. (6), (7) and (13).

^c Eqs. (6)–(11) and (13); $k_{ij} = l_{ij} = m_{ij} = 0$; $\alpha_{ij} = 0.3$ ^d Eqs. (6)–(11) and (13); $l_{ij} = m_{ij} = 0$; $\alpha_{ij} = 0.3$.

Table 8

Prediction of V^{E} by the PRSV CEOS models for the investigated ternary system from T = (288.15 to 323.15 K) and atmospheric pressure.

T (K)	vdW1-2 ^a		vdW1-3 ^b		TCBT-2 ^c		TCBT-3 ^d		
	PD (%)	$\sigma ({ m cm}^3{ m mol}^{-1})$	PD (%)	σ (cm ³ mol ⁻¹)	PD (%)	σ (cm ³ mol ⁻¹)	PD (%)	σ (cm ³ mol ⁻¹)	
1-Butanol(1)+cyclohe	xylamine(2)+r	n-heptane(3)							
288.15	15.86	0.2366	14.77	0.2186	10.68	0.1501	16.15	0.2707	
293.15	15.88	0.2385	14.93	0.2215	11.31	0.1603	15.60	0.2642	
298.15	15.90	0.2402	15.11	0.2244	11.46	0.1635	15.82	0.2668	
303.15	15.90	0.2417	15.42	0.2292	11.78	0.1686	16.08	0.2630	
308.15	15.89	0.2430	15.68	0.2334	12.20	0.1757	15.57	0.2538	
313.15	15.82	0.2433	15.85	0.2366	12.32	0.1785	15.19	0.2523	
318.15	15.67	0.2423	16.12	0.2408	12.68	0.1852	15.06	0.2419	
323.15	15.45	0.2405	16.33	0.2450	13.05	0.1915	23.23	0.4065	
288.15-323.15 ^e	12.98	0.1980	12.94	0.1966	9.63	0.1659	16.26	0.2453	
288.15-323.15 ^f	15.96	0.2431	15.58	0.2322	11.06	0.1608	21.02	0.3267	

^a Eqs. (6), (7) and (13); $l_{ij} = 0$.

^b Eqs. (6), (7) and (13).

^c Eqs. (6)-(11) and (13); $k_{ij} = l_{ij} = m_{ij} = 0$; $\alpha_{ij} = 0.3$. ^d Eqs. (6)-(11) and (13); $l_{ij} = m_{ij} = 0$; $\alpha_{ij} = 0.3$. ^e Prediction of V^E using temperature independent binary parameters. ^f Prediction of V^E using temperature dependent binary parameters.

Fig. 2. Excess molar volume V^{E} for the ternary system 1-butanol (1)+ cyclohexylamine (2)+n-heptane (3), at 303.15 K and atmospheric pressure, along the curves of constant ratio $z = x_1/x_3$ as a function of the cyclohexylamine composition. Symbols represent the experimental points. Solid curves were calculated by the Eq. (3).

as listed in the footnote of Tables 6–9. Parameters of these models were generated by minimizing the objective function Eq. (14) using the Marquardt optimisation technique [35]:

$$OF = \frac{1}{N} \sum_{i=i}^{N} \left(\frac{V_{exp}^{E} - V_{cal}^{E}}{V_{exp}^{E}} \right)_{i}^{2} \to \min$$
(14)

Modelling of the binary and ternary V^E data was performed by the PRSV CEOS with the vdW1 and TCBT mixing rules and the values of the model parameters, PD(V^E) and the corresponding σ of binary data are presented in Table 6 (correlation with temperature independent models) and Table 7 (correlation with temperature dependent models), while the results of prediction and correlation for the ternary system are given in Tables 8 and 9, respectively. Inspection of Table 6 indicates that for all systems, at each tem-

Fig. 3. Curves of constant V_{123}^{E} (cm³ mol⁻¹) for the ternary system 1-butanol (1)+cyclohexylamine (2)+n-heptane (3), at 303.15 K. The lines represent results calculated by the Eq. (3).

Fig. 4. Three-dimensional surface of V^{E} for the ternary system 1-butanol (1)+cyclohexylamine (2)+n-heptane (3), at 313.15 K, generated by the Eq. (3).

perature separately, the best results are obtained by the three parameter TCBT-3 model, and the superiority of TCBT-3 model is the most obvious in the case of 1-butanol + n-heptane system, especially comparing to two-parameter vdW1-2 and TCBT-2 models. The other three parameter model, vdW1-3 gave satisfactory results for this system at lower temperature but errors increase with temperature rising.

However, the influence of temperature on the V^{E} values is significant for the systems 1-butanol+n-heptane. Therefore, for the generation of unique set of parameters in the entire temperature range, it is recommendable to employ the temperature dependent models, especially in the case of TCBT-2 model, where the improvement of fit quality is obvious. On the other hand, in the case of 1-butanol+cyclohexylamine and cyclohexylamine+n-heptane systems, the temperature independent CEOS and CEOS/ G^{E} models could be recommended.

Correlation of the binary V^E by temperature dependent models (Table 7) confirms that vdW1-3 as a simpler model shows the best results for each binary, while the TCBT-3 model gives good result only for the 1-butanol+cyclohexylamine system.

Prediction of V^{E} for the ternary system 1-butanol+ cyclohexylamine+n-heptane at each temperature separately, and in the entire temperature range with unique set of parameters was performed with CEOS and CEOS/ G^{E} models, and the results are presented in Table 8.

Correlations of V^E data for the ternary system 1-butanol+ cyclohexylamine+n-heptane were performed by both $CEOS/G^E$ models. Table 9 shows very good results obtained for both temperature independent models TCBT-2 and TCBT-3.

The TCBT-3 model is superior for the correlation in whole temperature range using temperature independent binary parameters, while the TCBT-2 model is better, when the temperature dependent binary parameters are employed.

The results of prediction obtained by all models could be treated as fair, particularly results of the TCBT-2 model which uses temperature independent binary parameters.

4.2. Prediction of V^E by empirical models

As an alternative to the CEOS and $CEOS/G^E$ models, the prediction of V^E for multicomponent systems performed by empirical equations is proposed in the literature. Frequently used models

Correlation of V^{E} by the PRSV CEOS models for the investigated ternary system from T = (288.15 to 323.15 K) and atmospheric pressure.

T (K)	$\Delta g_{123} (J \mathrm{mol}^{-1}) \Delta g_{132} (J \mathrm{mol}^{-1})$	$\Delta g_{213} (J mol^{-1}) \Delta g_{231} (J mol^{-1})$	$\Delta g_{312} (J \mathrm{mol}^{-1}) \Delta g_{321} (J \mathrm{mol}^{-1})$	PD (%)	$\sigma ({ m cm}^3{ m mol}^{-1})$
1-Butanol T=288.	(1)+cyclohexylamine(2)+n-heptane(3) 15				
TCBT-	$-0.357380 imes 10^4$	$-0.641159 imes 10^4$	$0.454997 imes 10^4$	0.86	0.0138
2 ^a	$-0.46906 imes 10^4$	$0.949585 imes 10^4$	$0.583439 imes 10^4$		
TCBT-	$-0.673764 imes 10^4$	$-0.289614 imes 10^4$	-0.757649×10^{5}	0.67	0.0097
3	$-0.140200 imes 10^4$	$-0.357216 imes 10^4$	$0.432792 imes 10^4$		
b T = 202	15				
I = 255.	$13 0.708047 \times 10^3$	0.106954×10^5	0.563769×10^4	0.75	0.0126
2	$-0.703047 \times 10^{-0.703047} \times 10^{-0.703047} \times 10^{-0.703047}$	-0.100354×10^{4}	0.503703×10^{4}	0.75	0.0120
Z TCBT-	0.657262×10^4	-0.230007×10^{4}	0.082513×10^{5} 0.748581 $\times 10^{5}$	0.68	0 0000
3	-0.130778×10^4	-0.346002×10^4	-0.748581×10^{4} 0.424927 × 10 ⁴	0.00	0.0035
5	-0.130770 × 10	-0.540002 × 10	0.121527 × 10		
T=298.	15	0.710.011 1.04	0.070000 403	0.70	0.0105
TCBT-	0.708708 × 104	-0.713011×10^{4}	0.976606×10^{3}	0.79	0.0125
2	0.735977×10^4	-0.391644×10^{4}	-0.569624×10^4	0.05	0.0007
ICBI-	-0.702986 × 104	-0.266184×10^{4}	-0.714532×10^{3}	0.65	0.0097
3	-0.131532×10^4	-0.242071×10^{4}	0.425553×10^4		
T=303.	15				
TCBT-	$0.712070 imes 10^4$	$-0.702540 imes 10^4$	0.902317×10^{3}	0.81	0.0127
2	$0.707879 imes 10^4$	$-0.382281 imes 10^4$	$-0.575759 imes 10^4$		
TCBT-	$-0.655057 imes 10^4$	$-0.258778 imes 10^4$	$-0.748755 imes 10^5$	0.61	0.0089
3	$-0.145959 imes 10^4$	$-0.366334 imes 10^4$	$\textbf{0.446984} \times 10^4$		
T = 308.	15				
TCBT-	$-0.258511 imes 10^4$	$-0.847090 imes 10^4$	0.413001×10^4	0.73	0.0115
2	$-0.471288 imes 10^{2}$	0.106526×10^{5}	$0.437853 imes 10^4$		
TCBT-	$-0.693752 imes 10^4$	$-0.237310 imes 10^4$	$-0.703785 imes 10^5$	0.59	0.0090
3	$-0.130291 imes 10^4$	$-0.242369 imes 10^4$	0.434140×10^4		
T = 3131	15				
TCBT-	-0.263193×10^4	-0.845300×10^{4}	0.415607×10^4	0.68	0.0109
2	-0.465262×10^4	0.102419×10^5	0.468745×10^4	0.00	010100
- TCBT-	-0.717926×10^4	-0.225725×10^4	-0.668025×10^5	0.61	0.0093
3	-0.124640×10^4	-0.139781×10^4	0.424719×10^4	0101	0.0000
T 2101					
I = 318.1	15 0 100020 10 ⁴	0.807810 104	0.252722104	0.62	0.0107
1CB1-	-0.199020×10^{4}	-0.897819 × 10 ⁻	0.353732×10^{-6}	0.62	0.0107
Z	-0.452180×10^{4}	0.101976×10^{-6}	0.391305×10^{5}	0.50	0.009.4
1CB1-	-0.700878×10^{2} 0.121071 $\times 10^{4}$	$-0.207473 \times 10^{-0.207473}$	-0.002029×10^{4}	0.56	0.0084
J	-0.1510/1 × 10	-0.113721 × 10	0.420482 × 10		
T=323.	15				
TCBT-	-0.215684×10^4	-0.888451×10^{4}	0.358430×10^4	0.61	0.0106
2	-0.429425×10^4	0.915531×10^4	0.478824×10^4		
TCBT-	0.411612×10^4	-0.215534×10^{4}	-0.380491×10^{5}	0.65	0.0101
3	0.468795×10^3	$-0.143234 imes 10^4$	-0.289743×10^{3}		
T=288.	15-323.15 ^c				
TCBT-	$-0.644843 imes 10^4$	$0.605223 imes 10^4$	$-0.141562 imes 10^4$	7.05	0.1138
2	$-0.232910 imes 10^4$	$-0.259398 imes 10^4$	$0.388333 imes 10^4$		
TCBT-	$-0.525349 imes 10^4$	$-0.631499 imes 10^4$	$0.665577 imes 10^4$	0.89	0.0135
3	$-0.472423 imes 10^4$	0.108354×10^5	$-0.117799 imes 10^4$		
T=288	15-323.15 ^d				
TCBT-	-0.151474×10^{4}	$-0.826044 imes 10^4$	$0.348138 imes 10^4$	1.12	0.0180
2	$-0.475506 imes 10^4$	0.126732×10^{5}	0.302990×10^{3}		
TCBT-	$0.434980 imes 10^5$	0.835418×10^{3}	$-0.609880 imes 10^4$	2.80	0.0440
3	0.337098×10^4	0.131118×10^4	-0.595839×10^{3}		

^a Eqs. (6)–(13); $k_{ij} = l_{ij} = m_{ij} = 0$; $\alpha_{ij} = 0.3$.

^b Eqs. (6)–(13); $l_{ij} = m_{ij} = 0$; $\alpha_{ij} = 0.3$.

^c Correlation of *V*^E using prediction results obtained with temperature independent binary parameters.

^d Correlation of *V*^E using prediction results obtained with temperature dependent binary parameters.

are known as symmetric and asymmetric polynomials. Symmetric or geometrical polynomials used here are Kohler [10], Colinet [11], Radojković et al. [12], Rastogi et al. [13] and Jacob–Fitzner [14]. Asymmetric models applied in this work are the Scatchard et al. [15], Tsao–Smith [16] and Toop [17]. In symmetric polynomials the contribution of the three binaries to the ternary excess property are treated equally while asymmetric models indicate different individual contribution of one of the binaries [36].

The results of the V^{E} calculation performed by CEOS and empirical models were assessed by the root-mean-square deviation σ , Eq. (4), and by the percentage average absolute deviation $\text{PD}(V^{\text{E}})$, Eq. (5). Table 10 presents results of both the symmetric and asymmetric models considered in this work, and it can be seen that the satisfactory predictions of the experimental ternary V^E data were obtained by symmetric equations of Radojković et al., and Jacob–Fitzner, whereas the most inadequate estimation by this type of equation was with the equation of Rastogi et al. For all asymmetric equations, better PD and σ were obtained with n-heptane as the asymmetric component (Tsao–Smith^c, Toop^c and Scatchard et al.^c), while quite poor predictions were in the arrangement where 1-butanol was the asymmetric component. Also, Table 10 indicates that polynomial equations with cyclohexylamine as the asymmetric symmetric sym

Prediction of the V ^E data b	by the empirical models for th	e investigated ternary system and t	the corresponding PD(%) and σ (cm ³ mol ⁻¹).
	J · · · · · · · · · · · · · · · · · ·		

T(K)	288.15		293.15		298.15		303.15		308.15		313.15		318.15		323.15	
	PD	σ	PD	σ	PD	σ	PD	σ	PD	σ	PD	σ	PD	σ	PD	σ
1-Butanol(1)+c	yclohexy	lamine(2)-	+ n-hepta	ne(3)												
Radojković	13.60	0.1981	13.73	0.2008	13.88	0.2039	14.05	0.2072	14.24	0.2107	14.44	0.2142	14.69	0.2185	14.94	0.2229
Kohler	14.34	0.2072	14.44	0.2100	14.57	0.2131	14.73	0.2166	14.91	0.2204	15.12	0.2244	15.41	0.2293	15.69	0.2344
Jacob-Fitzner	13.60	0.1981	13.73	0.2008	13.88	0.2039	14.05	0.2072	14.24	0.2107	14.44	0.2142	14.69	0.2185	14.94	0.2229
Colinet	14.18	0.2061	14.30	0.2087	14.46	0.2116	14.64	0.2150	14.84	0.2186	15.07	0.2225	15.38	0.2273	15.67	0.2323
Tsao-Smith ^a	18.81	0.2684	18.85	0.2706	18.93	0.2732	19.04	0.2761	19.20	0.2797	19.39	0.2835	19.64	0.2880	19.94	0.2936
Tsao–Smith ^b	15.15	0.2203	15.49	0.2256	15.91	0.2319	16.35	0.2386	16.84	0.2461	17.38	0.2542	18.08	0.2641	18.73	0.2742
Tsao–Smith ^c	3.56	0.0471	3.52	0.0469	3.51	0.0470	3.52	0.0474	3.54	0.0479	3.59	0.0488	3.73	0.0508	3.85	0.0526
Toop ^a	16.24	0.2343	16.42	0.2379	16.63	0.2419	16.87	0.2464	17.17	0.2515	17.49	0.2570	17.88	0.2633	18.33	0.2706
Toop ^b	13.46	0.2003	13.64	0.2035	13.86	0.2072	14.09	0.2112	14.34	0.2155	14.61	0.2200	14.98	0.2256	15.29	0.2310
Toop ^c	12.99	0.1852	12.98	0.1863	13.00	0.1876	13.04	0.1891	13.08	0.1907	13.15	0.1925	13.30	0.1951	13.42	0.1976
Scatchard ^a	16.12	0.2326	16.31	0.2364	16.54	0.2405	16.80	0.2451	17.10	0.2503	17.44	0.2559	17.84	0.2623	18.29	0.2696
Scatchard ^b	13.29	0.1972	13.44	0.1999	13.64	0.2032	13.84	0.2067	14.06	0.2103	14.29	0.2142	14.59	0.2190	14.86	0.2236
Scatchard ^c	12.55	0.1811	12.58	0.1824	12.62	0.1839	12.69	0.1857	12.75	0.1875	12.84	0.1895	13.01	0.1923	13.13	0.1948
Rastogi	24.28	0.3434	24.49	0.3472	24.74	0.3511	25.05	0.3552	25.37	0.3592	25.71	0.3635	26.09	0.3682	26.46	0.3731

^a 1-Butanol is asymmetric component.

^b Cyclohexylamine is asymmetric component.

^c n-Heptane is asymmetric component.

ric component (Tsao–Smith^b, Toop^b and Scatchard et al.^b) have some limitations. Increasing of the system temperature has no influence on calculations by the investigated polynomials (PD are slightly higher). Among the polynomials applied to ternary V^E prediction, the best results were obtained by Tsao–Smith^c equation. This model presents the advantage of using only binary data, which are more available in literature.

Finally, it is interesting to compare the predicting results of polynomials (Table 10) with the corresponding results obtained by CEOS and $CEOS/G^E$ models (Table 8). It is evident that the Tsao–Smith^c model works much better than two and three parameters CEOS and $CEOS/G^E$ models, while some of aforementioned polynomials are slightly better than the applied cubic equation of state models.

Acknowledgements

This work was supported by a grant from the Research Fund of Ministry of Science and Environmental Protection, Serbia and the Faculty of Technology and Metallurgy, University of Belgrade (project no. 142064).

References

- S.P. Šerbanović, M.Lj. Kijevčanin, I.R. Radović, B.D. Djordjević, Fluid Phase Equilib. 239 (2006) 69–82.
- [2] M.Lj. Kijevčanin, S.P. Šerbanović, I.R. Radović, B.D. Djordjević, A.Ž. Tasić, Fluid Phase Equilib. 251 (2007) 78–92.
- [3] I.R. Radović, M.Lj. Kijevčanin, E.M. Djordjević, B.D. Djordjević, S.P. Šerbanović, Fluid Phase Equilib. 263 (2008) 205–213.
- [4] L.I.N. Tomé, M.T.S. Rosado, M.E.S. Eusébio, J.S. Redinha, J. Mol. Struct.: Theochem. 804 (2007) 65–74.
- [5] I.R. Grgurić, S.P. Šerbanović, M.Lj. Kijevčanin, A.Ž. Tasić, B.D. Djordjević, Thermochim. Acta 412 (2004) 25–31.
- [6] J.D. Smiljanić, M.Lj. Kijevčanin, B.D. Djordjević, D.K. Grozdanić, S.P. Šerbanović, Int. J. Thermophys. 29 (2008) 586–609.
- [7] R. Stryjek, J.H. Vera, Can. J. Chem. Eng. 64 (1986) 323-333.

- [8] Y. Adachi, H. Sugie, Fluid Phase Equilib. 28 (1986) 103-118.
- [9] C.H. Twu, J.E. Coon, D. Bluck, B. Tilton, Fluid Phase Equilib. 158-160 (1999) 271-281.
- [10] F. Kohler, Monatsh. Chem. 91 (1960) 738-740.
- [11] C. Colinet, Ph.D. Thesis, University of Grenoble, France, 1967.
- [12] N. Radojković, A. Tasić, D. Grozdanić, B. Djordjević, D. Malić, J. Chem. Thermodyn. 9 (1977) 349-356.
- [13] R.P. Rastogi, J. Nath, S.S. Das, J. Chem. Eng. Data 22 (1977) 249-252.
- [14] K.T. Jacob, K. Fitzner, Thermochim. Acta 18 (1977) 197-206.
- [15] G. Scatchard, L.B. Ticknor, J.R. Goates, E.R. McCartney, J. Am. Chem. Soc. 74 (1952) 3721–3724.
- [16] C.C. Tsao, J.M. Smith, Chem. Eng. Prog. Symp. Series 49 (1953) 107-117.
- [17] G.W. Toop, Trans. TMS-AIME 233 (1965) 850-855.
- [18] A.J. Treszczanowicz, G.C. Benson, J. Chem. Thermodyn. 10 (1978) 967-974.
- [19] C. Berro, A. Peneloux, J. Chem. Eng. Data 29 (1984) 206-210.
- [20] J. Nath, J.G. Pandey, J. Chem. Eng. Data 42 (1997) 128-131.
- [21] N.V. Sastry, M.K. Valand, J. Chem. Eng. Data 41 (1996) 1421-1425.
- [22] J. Vijande, M.M. Pineiro, J. Garcia, J.L. Velencia, J.L. Legido, J. Chem. Eng. Data 51 (2006) 1778-1782.
- [23] G. Dharmaraju, G. Narayanaswamy, G.K. Raman, J. Chem. Thermodyn. 13 (1981) 249-251.
- [24] A. Grenner, M. Klauck, M. Kramer, J. Schmelzer, J. Chem. Eng. Data 51 (2006) 176–180.
- [25] G.D. Raju, G.N. Swamy, G.K. Raman, J. Solut. Chem. 10 (1981) 79-82.
- [26] J. Riddick, W.B. Bunger, T.K. Sakano, Physical Properties and Methods of Purification, vol. II, Organic Solvents, Wiley, New York, 1986.
- [27] N. Radojković, A. Tasić, B. Djordjević, D. Grozdanić, J. Chem. Thermodyn. 8 (1976) 1111-1114.
- [28] A.Ž. Tasić, D.K. Grozdanić, B.D. Djordjević, S.P. Šerbanović, N. Radojković, J. Chem. Eng. Data 40 (1995) 586–588.
- [29] O. Redlich, A. Kister, Ind. Eng. Chem. 40 (1948) 345–348.
- [30] R. Bevington, D.K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, Singapore, 1994.
- [31] I. Nagata, K. Tamura, J. Chem. Thermodyn. 22 (1990) 279–283.
- [32] I.R. Radović, M.Lj. Kijevčanin, A.Ž. Tasić, B.D. Djordjević, S.P. Šerbanović, J. Serb.
- Chem. Soc., 2009, in press. [33] A.J. Treszczanowicz, O. Kiyohara, G.C. Benson, J. Chem. Thermodyn. 13 (1981) 253–260.
- [34] H. Renon, J.M. Prausnitz, AIChE J. 14 (1968) 135–144.
- [35] D.W. Marquardt, J. Soc. Ind. Appl. Math. 2 (1963) 431–441.
- [36] B.D. Djordjević, S.P. Šerbanović, I.R. Radović, A.Ž. Tasić, M.Lj. Kijevčanin, J. Serb. Chem. Soc, 72 (2007) 1437–1463.